高维均值王问题的实验解决方案

Tareq Jaouni, Xiaoqin Gao, Sören Arlt, Mario Krenn, and Ebrahim Karimi
{"title":"高维均值王问题的实验解决方案","authors":"Tareq Jaouni, Xiaoqin Gao, Sören Arlt, Mario Krenn, and Ebrahim Karimi","doi":"10.1364/opticaq.502451","DOIUrl":null,"url":null,"abstract":"Vaidman, Aharanov, and Albert [Phys. Rev. Lett. <b>58</b>(14), 1385 (1987) [CrossRef] <span> </span>] put forward a puzzle called the mean king’s problem (MKP) that can be solved only by harnessing quantum entanglement. Prime-powered solutions to the problem have been shown to exist, but they have not yet been experimentally realized for any dimension beyond two. We propose a general first-of-its-kind experimental scheme for solving the MKP in prime dimensions (<i>D</i>). Our search is guided by the digital discovery framework <span style=\"font-variant: small-caps\">Pytheus</span>, which finds highly interpretable graph-based representations of quantum optical experimental setups; using it, we find specific solutions and generalize to higher dimensions through human insight. As proof of principle, we present a detailed investigation of our solution for the three-, five-, and seven-dimensional cases. We obtain maximum success probabilities of <span><span style=\"color: inherit;\"><span><span>82.3</span><span><span>%</span></span></span></span><script type=\"math/tex\">82.3{\\% }</script></span>, <span><span style=\"color: inherit;\"><span><span>56.2</span><span><span>%</span></span></span></span><script type=\"math/tex\">56.2{\\% }</script></span>, and <span><span style=\"color: inherit;\"><span><span>35.5</span><span><span>%</span></span></span></span><script type=\"math/tex\">35.5 {\\% }</script></span>, respectively. We therefore posit that our computer-inspired scheme yields solutions that implement Alice’s strategy with quantum advantage, demonstrating its promise for experimental implementation in quantum communication tasks.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental solutions to the high-dimensional mean king’s problem\",\"authors\":\"Tareq Jaouni, Xiaoqin Gao, Sören Arlt, Mario Krenn, and Ebrahim Karimi\",\"doi\":\"10.1364/opticaq.502451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vaidman, Aharanov, and Albert [Phys. Rev. Lett. <b>58</b>(14), 1385 (1987) [CrossRef] <span> </span>] put forward a puzzle called the mean king’s problem (MKP) that can be solved only by harnessing quantum entanglement. Prime-powered solutions to the problem have been shown to exist, but they have not yet been experimentally realized for any dimension beyond two. We propose a general first-of-its-kind experimental scheme for solving the MKP in prime dimensions (<i>D</i>). Our search is guided by the digital discovery framework <span style=\\\"font-variant: small-caps\\\">Pytheus</span>, which finds highly interpretable graph-based representations of quantum optical experimental setups; using it, we find specific solutions and generalize to higher dimensions through human insight. As proof of principle, we present a detailed investigation of our solution for the three-, five-, and seven-dimensional cases. We obtain maximum success probabilities of <span><span style=\\\"color: inherit;\\\"><span><span>82.3</span><span><span>%</span></span></span></span><script type=\\\"math/tex\\\">82.3{\\\\% }</script></span>, <span><span style=\\\"color: inherit;\\\"><span><span>56.2</span><span><span>%</span></span></span></span><script type=\\\"math/tex\\\">56.2{\\\\% }</script></span>, and <span><span style=\\\"color: inherit;\\\"><span><span>35.5</span><span><span>%</span></span></span></span><script type=\\\"math/tex\\\">35.5 {\\\\% }</script></span>, respectively. We therefore posit that our computer-inspired scheme yields solutions that implement Alice’s strategy with quantum advantage, demonstrating its promise for experimental implementation in quantum communication tasks.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.502451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.502451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Vaidman, Aharanov 和 Albert [Phys.58(14), 1385 (1987) [CrossRef] ]提出了一个名为平均王问题(MKP)的难题,只有利用量子纠缠才能解决。该问题的主要解决方案已被证明是存在的,但尚未在实验中实现二维以上的任何维度。我们提出了一个同类首创的通用实验方案,用于解决质子维度(D)的 MKP 问题。我们的搜索以数字发现框架 Pytheus 为指导,该框架可以找到量子光学实验设置的高度可解释的基于图的表示;利用它,我们可以找到具体的解决方案,并通过人类的洞察力推广到更高维度。作为原理证明,我们对三维、五维和七维情况下的解决方案进行了详细研究。我们获得的最大成功概率分别为 82.3%82.3{\% }、56.2%56.2{/\% } 和 35.5%35.5 {\% }。因此,我们认为我们的计算机启发方案产生的解决方案能以量子优势实现爱丽丝的策略,证明了它在量子通信任务中的实验实现前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental solutions to the high-dimensional mean king’s problem
Vaidman, Aharanov, and Albert [Phys. Rev. Lett. 58(14), 1385 (1987) [CrossRef] ] put forward a puzzle called the mean king’s problem (MKP) that can be solved only by harnessing quantum entanglement. Prime-powered solutions to the problem have been shown to exist, but they have not yet been experimentally realized for any dimension beyond two. We propose a general first-of-its-kind experimental scheme for solving the MKP in prime dimensions (D). Our search is guided by the digital discovery framework Pytheus, which finds highly interpretable graph-based representations of quantum optical experimental setups; using it, we find specific solutions and generalize to higher dimensions through human insight. As proof of principle, we present a detailed investigation of our solution for the three-, five-, and seven-dimensional cases. We obtain maximum success probabilities of 82.3%, 56.2%, and 35.5%, respectively. We therefore posit that our computer-inspired scheme yields solutions that implement Alice’s strategy with quantum advantage, demonstrating its promise for experimental implementation in quantum communication tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信