用于量子通信的砷化镓绝缘体微蜂窝的连续纠缠分布

Trevor J. Steiner, Maximilian Shen, Joshua E. Castro, John E. Bowers, and Galan Moody
{"title":"用于量子通信的砷化镓绝缘体微蜂窝的连续纠缠分布","authors":"Trevor J. Steiner, Maximilian Shen, Joshua E. Castro, John E. Bowers, and Galan Moody","doi":"10.1364/opticaq.510032","DOIUrl":null,"url":null,"abstract":"Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with &gt;300 nm (&gt;40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW<sup>2</sup> pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the &gt;20 frequency modes are multiplexed, we estimate &gt;100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <span><span>&lt;9{\\% }</span><script type=\"math/tex\"><9{\\% }</script></span> error.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous entanglement distribution from an AlGaAs-on-insulator microcomb for quantum communications\",\"authors\":\"Trevor J. Steiner, Maximilian Shen, Joshua E. Castro, John E. Bowers, and Galan Moody\",\"doi\":\"10.1364/opticaq.510032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with &gt;300 nm (&gt;40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW<sup>2</sup> pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the &gt;20 frequency modes are multiplexed, we estimate &gt;100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <span><span>&lt;9{\\\\% }</span><script type=\\\"math/tex\\\"><9{\\\\% }</script></span> error.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.510032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.510032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用铝砷化镓微oring 谐振器展示了一种明亮的量子光学微蜂窝,它具有 300 nm(40 THz)带宽和 20 多组时间能量纠缠模式,可利用简单的现成商用电信组件实现光谱解复用。我们报告了两组纠缠光子对频率模式的高速率连续纠缠分布,显示出高达 20 GHz/mW2 的光子对生成率。作为纠缠分发的一个示例,我们执行了一个连续波分时量子密钥分发协议,该协议具有 8 kbps 筛选密钥率,同时保持低于 10% 的错误率和足够的双光子可见性,以确保信道的安全性。当 20 个频率模式被复用时,我们估算出 100 kbps 基于纠缠的密钥率或创建一个多用户量子通信网络。整个系统所需的片上光功率不到 110 µW,证明了量子通信纠缠频率模式的高效来源。作为原理验证,量子密钥分布在加州大学圣塔芭芭拉分校(UCSB)校园内12公里长的光纤上,用于加密21 kB的图像,误差为9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous entanglement distribution from an AlGaAs-on-insulator microcomb for quantum communications
Using an aluminum gallium arsenide microring resonator, we demonstrate a bright quantum optical microcomb with >300 nm (>40 THz) bandwidth and more than 20 sets of time–energy entangled modes, enabling spectral demultiplexing with simple, off-the-shelf commercial telecom components. We report high-rate continuous entanglement distribution for two sets of entangled-photon pair frequency modes exhibiting up to 20 GHz/mW2 pair generation rate. As an illustrative example of entanglement distribution, we perform a continuous-wave time-bin quantum key distribution protocol with 8 kbps sifted key rates while maintaining less than 10% error rate and sufficient two-photon visibility to ensure security of the channel. When the >20 frequency modes are multiplexed, we estimate >100 kbps entanglement-based key rates or the creation of a multi-user quantum communications network. The entire system requires less than 110 µW of on-chip optical power, demonstrating an efficient source of entangled frequency modes for quantum communications. As a proof of principle, a quantum key is distributed across 12 km of deployed fiber on the University of California Santa Barbara (UCSB) campus and used to encrypt a 21 kB image with <9{\% } error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信