通过相干态分解模拟量子光学

Jeffrey Marshall and Namit Anand
{"title":"通过相干态分解模拟量子光学","authors":"Jeffrey Marshall and Namit Anand","doi":"10.1364/opticaq.504311","DOIUrl":null,"url":null,"abstract":"We introduce a framework for simulating quantum optics by decomposing the system into a finite rank (number of terms) superposition of coherent states. This allows us to define a resource theory, where linear optical operations are “free” (i.e., do not increase the rank), and the simulation complexity for an <i>m</i>-mode system scales quadratically in <i>m</i>, in stark contrast to the Hilbert space dimension. We outline this approach explicitly in the Fock basis, relevant in particular for Boson sampling, where the simulation time (space) complexity for computing output amplitudes, to arbitrary accuracy, scales as <i>O</i>(<i>m</i><sup>2</sup> 2<sup><i>n</i></sup>) [<i>O</i>(<i>m</i>2<sup><i>n</i></sup>)] for <i>n</i> photons distributed among <i>m</i> modes. We additionally demonstrate that linear optical simulations with the <i>n</i> photons initially in the same mode scales efficiently, as <i>O</i>(<i>m</i><sup>2</sup> <i>n</i>). This paradigm provides a practical notion of “non-classicality,” i.e., the classical resources required for simulation. Moreover, by making connections to the stellar rank formalism, we show this comes from two independent contributions, the number of single-photon additions and the amount of squeezing.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of quantum optics by coherent state decomposition\",\"authors\":\"Jeffrey Marshall and Namit Anand\",\"doi\":\"10.1364/opticaq.504311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework for simulating quantum optics by decomposing the system into a finite rank (number of terms) superposition of coherent states. This allows us to define a resource theory, where linear optical operations are “free” (i.e., do not increase the rank), and the simulation complexity for an <i>m</i>-mode system scales quadratically in <i>m</i>, in stark contrast to the Hilbert space dimension. We outline this approach explicitly in the Fock basis, relevant in particular for Boson sampling, where the simulation time (space) complexity for computing output amplitudes, to arbitrary accuracy, scales as <i>O</i>(<i>m</i><sup>2</sup> 2<sup><i>n</i></sup>) [<i>O</i>(<i>m</i>2<sup><i>n</i></sup>)] for <i>n</i> photons distributed among <i>m</i> modes. We additionally demonstrate that linear optical simulations with the <i>n</i> photons initially in the same mode scales efficiently, as <i>O</i>(<i>m</i><sup>2</sup> <i>n</i>). This paradigm provides a practical notion of “non-classicality,” i.e., the classical resources required for simulation. Moreover, by making connections to the stellar rank formalism, we show this comes from two independent contributions, the number of single-photon additions and the amount of squeezing.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.504311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.504311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了一个模拟量子光学的框架,将系统分解为有限阶(项数)的相干态叠加。这样,我们就能定义一种资源理论,其中的线性光学操作是 "免费 "的(即不增加阶数),而 m 模式系统的模拟复杂度以 m 为单位呈二次方扩展,这与希尔伯特空间维度形成了鲜明对比。我们在福克基础上明确概述了这种方法,尤其与玻色子采样相关,对于分布在 m 个模式中的 n 个光子,计算任意精度输出振幅的模拟时间(空间)复杂度为 O(m2 2n) [O(m2n)]。此外,我们还证明,对于最初处于同一模式的 n 个光子的线性光学模拟,其复杂度也能高效地缩放为 O(m2 n)。这一范式提供了 "非经典性 "的实用概念,即模拟所需的经典资源。此外,通过与恒星秩形式主义的联系,我们表明这来自两个独立的贡献,即单光子添加的数量和挤压的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of quantum optics by coherent state decomposition
We introduce a framework for simulating quantum optics by decomposing the system into a finite rank (number of terms) superposition of coherent states. This allows us to define a resource theory, where linear optical operations are “free” (i.e., do not increase the rank), and the simulation complexity for an m-mode system scales quadratically in m, in stark contrast to the Hilbert space dimension. We outline this approach explicitly in the Fock basis, relevant in particular for Boson sampling, where the simulation time (space) complexity for computing output amplitudes, to arbitrary accuracy, scales as O(m2 2n) [O(m2n)] for n photons distributed among m modes. We additionally demonstrate that linear optical simulations with the n photons initially in the same mode scales efficiently, as O(m2 n). This paradigm provides a practical notion of “non-classicality,” i.e., the classical resources required for simulation. Moreover, by making connections to the stellar rank formalism, we show this comes from two independent contributions, the number of single-photon additions and the amount of squeezing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信