使用 SigProfilerAssignment 为单个样本和单个体细胞突变指定突变特征

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Marcos Díaz-Gay, Raviteja Vangara, Mark Barnes, Xi Wang, S M Ashiqul Islam, Ian Vermes, Stephen Duke, Nithish Bharadhwaj Narasimman, Ting Yang, Zichen Jiang, Sarah Moody, Sergey Senkin, Paul Brennan, Michael R Stratton, Ludmil B Alexandrov
{"title":"使用 SigProfilerAssignment 为单个样本和单个体细胞突变指定突变特征","authors":"Marcos Díaz-Gay, Raviteja Vangara, Mark Barnes, Xi Wang, S M Ashiqul Islam, Ian Vermes, Stephen Duke, Nithish Bharadhwaj Narasimman, Ting Yang, Zichen Jiang, Sarah Moody, Sergey Senkin, Paul Brennan, Michael R Stratton, Ludmil B Alexandrov","doi":"10.1093/bioinformatics/btad756","DOIUrl":null,"url":null,"abstract":"Motivation Analysis of mutational signatures is a powerful approach for understanding the mutagenic processes that have shaped the evolution of a cancer genome. To evaluate the mutational signatures operative in a cancer genome, one first needs to quantify their activities by estimating the number of mutations imprinted by each signature. Results Here we present SigProfilerAssignment, a desktop and an online computational framework for assigning all types of mutational signatures to individual samples. SigProfilerAssignment is the first tool that allows both analysis of copy-number signatures and probabilistic assignment of signatures to individual somatic mutations. As its computational engine, the tool uses a custom implementation of the forward stagewise algorithm for sparse regression and nonnegative least squares for numerical optimization. Analysis of 2,700 synthetic cancer genomes with and without noise demonstrates that SigProfilerAssignment outperforms four commonly used approaches for assigning mutational signatures. Availability SigProfilerAssignment is available under the BSD 2-clause license at https://github.com/AlexandrovLab/SigProfilerAssignment with a web implementation at https://cancer.sanger.ac.uk/signatures/assignment/. Supplementary information Supplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment\",\"authors\":\"Marcos Díaz-Gay, Raviteja Vangara, Mark Barnes, Xi Wang, S M Ashiqul Islam, Ian Vermes, Stephen Duke, Nithish Bharadhwaj Narasimman, Ting Yang, Zichen Jiang, Sarah Moody, Sergey Senkin, Paul Brennan, Michael R Stratton, Ludmil B Alexandrov\",\"doi\":\"10.1093/bioinformatics/btad756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation Analysis of mutational signatures is a powerful approach for understanding the mutagenic processes that have shaped the evolution of a cancer genome. To evaluate the mutational signatures operative in a cancer genome, one first needs to quantify their activities by estimating the number of mutations imprinted by each signature. Results Here we present SigProfilerAssignment, a desktop and an online computational framework for assigning all types of mutational signatures to individual samples. SigProfilerAssignment is the first tool that allows both analysis of copy-number signatures and probabilistic assignment of signatures to individual somatic mutations. As its computational engine, the tool uses a custom implementation of the forward stagewise algorithm for sparse regression and nonnegative least squares for numerical optimization. Analysis of 2,700 synthetic cancer genomes with and without noise demonstrates that SigProfilerAssignment outperforms four commonly used approaches for assigning mutational signatures. Availability SigProfilerAssignment is available under the BSD 2-clause license at https://github.com/AlexandrovLab/SigProfilerAssignment with a web implementation at https://cancer.sanger.ac.uk/signatures/assignment/. Supplementary information Supplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad756\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad756","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

分析突变特征是了解癌症基因组进化过程中突变过程的有力方法。要评估癌症基因组中的突变特征,首先需要通过估算每个特征所包含的突变数量来量化它们的活动。结果 我们在此介绍 SigProfilerAssignment,它是一个桌面和在线计算框架,用于为单个样本分配所有类型的突变特征。SigProfilerAssignment 是第一款既能分析拷贝数特征,又能对个体体细胞突变特征进行概率分配的工具。作为计算引擎,该工具采用了定制的稀疏回归前向分阶段算法和非负最小二乘法进行数值优化。对 2,700 个有噪声和无噪声的合成癌症基因组的分析表明,SigProfilerAssignment 优于四种常用的突变特征分配方法。可用性 SigProfilerAssignment 在 BSD 2 条款许可下可在 https://github.com/AlexandrovLab/SigProfilerAssignment 上获取,其网络实现可在 https://cancer.sanger.ac.uk/signatures/assignment/ 上获取。补充信息 补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment
Motivation Analysis of mutational signatures is a powerful approach for understanding the mutagenic processes that have shaped the evolution of a cancer genome. To evaluate the mutational signatures operative in a cancer genome, one first needs to quantify their activities by estimating the number of mutations imprinted by each signature. Results Here we present SigProfilerAssignment, a desktop and an online computational framework for assigning all types of mutational signatures to individual samples. SigProfilerAssignment is the first tool that allows both analysis of copy-number signatures and probabilistic assignment of signatures to individual somatic mutations. As its computational engine, the tool uses a custom implementation of the forward stagewise algorithm for sparse regression and nonnegative least squares for numerical optimization. Analysis of 2,700 synthetic cancer genomes with and without noise demonstrates that SigProfilerAssignment outperforms four commonly used approaches for assigning mutational signatures. Availability SigProfilerAssignment is available under the BSD 2-clause license at https://github.com/AlexandrovLab/SigProfilerAssignment with a web implementation at https://cancer.sanger.ac.uk/signatures/assignment/. Supplementary information Supplementary data are available at Bioinformatics online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信