{"title":"具有霍林IV型功能响应的离散捕食者-猎物模型中的分岔和混合控制","authors":"Wenxian Zhang, Shengfu Deng","doi":"10.1007/s10998-023-00568-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate the 1:1 resonance and the hybrid control in a discrete predator–prey model with Holling-IV functional response, which is derived from a 2-dimensional continuous one of Gause type. When the parameters satisfy some conditions, this discrete model has a positive fixed point, which has a double eigenvalue 1 with geometric multiplicity 1. With the Picard iteration and the time-one map, this discrete one is converted into an ordinary differential system. It is shown that a Bogdanov–Takens bifurcation for this ordinary differential system happens by the bifurcation theory. This implies that this discrete model undergoes a Neimark–Sacker bifurcation and a homoclinic bifurcation. The stability of its fixed point is obtained. Then, the hybrid control strategy is applied to control the stability of this fixed point. Finally, the local phase portraits of these systems are also simulated by the Matlab software.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and hybrid control in a discrete predator–prey model with Holling type-IV functional response\",\"authors\":\"Wenxian Zhang, Shengfu Deng\",\"doi\":\"10.1007/s10998-023-00568-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we investigate the 1:1 resonance and the hybrid control in a discrete predator–prey model with Holling-IV functional response, which is derived from a 2-dimensional continuous one of Gause type. When the parameters satisfy some conditions, this discrete model has a positive fixed point, which has a double eigenvalue 1 with geometric multiplicity 1. With the Picard iteration and the time-one map, this discrete one is converted into an ordinary differential system. It is shown that a Bogdanov–Takens bifurcation for this ordinary differential system happens by the bifurcation theory. This implies that this discrete model undergoes a Neimark–Sacker bifurcation and a homoclinic bifurcation. The stability of its fixed point is obtained. Then, the hybrid control strategy is applied to control the stability of this fixed point. Finally, the local phase portraits of these systems are also simulated by the Matlab software.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00568-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00568-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bifurcation and hybrid control in a discrete predator–prey model with Holling type-IV functional response
In this paper we investigate the 1:1 resonance and the hybrid control in a discrete predator–prey model with Holling-IV functional response, which is derived from a 2-dimensional continuous one of Gause type. When the parameters satisfy some conditions, this discrete model has a positive fixed point, which has a double eigenvalue 1 with geometric multiplicity 1. With the Picard iteration and the time-one map, this discrete one is converted into an ordinary differential system. It is shown that a Bogdanov–Takens bifurcation for this ordinary differential system happens by the bifurcation theory. This implies that this discrete model undergoes a Neimark–Sacker bifurcation and a homoclinic bifurcation. The stability of its fixed point is obtained. Then, the hybrid control strategy is applied to control the stability of this fixed point. Finally, the local phase portraits of these systems are also simulated by the Matlab software.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.