一些匹配问题集合的能量景观

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Till Kahlke, Alexander K Hartmann
{"title":"一些匹配问题集合的能量景观","authors":"Till Kahlke, Alexander K Hartmann","doi":"10.1088/2632-072x/ad0d88","DOIUrl":null,"url":null,"abstract":"The maximum-weight matching problem and the behavior of its energy landscape is numerically investigated. We apply a perturbation method adapted from the analysis of spin glasses. This method provides insight into the complexity of the energy landscape of different ensembles. Erdős–Rényi graphs and ring graphs with randomly added edges are considered, and two types of distributions for the random edge weights are used. Fast and scalable algorithms exist for maximum weight matching, allowing us to study large graphs with more than 10<sup>5</sup> nodes. Our results show that the structure of the energy landscape for standard ensembles of matching is simple, comparable to the energy landscape of a ferromagnet. Nonetheless, for some of the ensembles presented here, our results allow for the presence of complex energy landscapes in the spirit of a replica-symmetry breaking scenario.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"152 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy landscapes of some matching-problem ensembles\",\"authors\":\"Till Kahlke, Alexander K Hartmann\",\"doi\":\"10.1088/2632-072x/ad0d88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum-weight matching problem and the behavior of its energy landscape is numerically investigated. We apply a perturbation method adapted from the analysis of spin glasses. This method provides insight into the complexity of the energy landscape of different ensembles. Erdős–Rényi graphs and ring graphs with randomly added edges are considered, and two types of distributions for the random edge weights are used. Fast and scalable algorithms exist for maximum weight matching, allowing us to study large graphs with more than 10<sup>5</sup> nodes. Our results show that the structure of the energy landscape for standard ensembles of matching is simple, comparable to the energy landscape of a ferromagnet. Nonetheless, for some of the ensembles presented here, our results allow for the presence of complex energy landscapes in the spirit of a replica-symmetry breaking scenario.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad0d88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad0d88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们对最大重量匹配问题及其能量景观的行为进行了数值研究。我们采用了自旋玻璃分析中改编的扰动方法。这种方法有助于深入了解不同集合的能量景观的复杂性。我们考虑了带有随机添加边缘的厄尔多斯-雷尼图和环图,并使用了两种随机边缘权重分布。最大权重匹配存在快速且可扩展的算法,使我们能够研究超过 105 个节点的大型图。我们的结果表明,标准匹配集合的能量景观结构很简单,与铁磁体的能量景观相当。然而,对于本文介绍的一些集合,我们的结果允许存在复杂的能量景观,这与复制对称破缺情景的精神不谋而合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy landscapes of some matching-problem ensembles
The maximum-weight matching problem and the behavior of its energy landscape is numerically investigated. We apply a perturbation method adapted from the analysis of spin glasses. This method provides insight into the complexity of the energy landscape of different ensembles. Erdős–Rényi graphs and ring graphs with randomly added edges are considered, and two types of distributions for the random edge weights are used. Fast and scalable algorithms exist for maximum weight matching, allowing us to study large graphs with more than 105 nodes. Our results show that the structure of the energy landscape for standard ensembles of matching is simple, comparable to the energy landscape of a ferromagnet. Nonetheless, for some of the ensembles presented here, our results allow for the presence of complex energy landscapes in the spirit of a replica-symmetry breaking scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信