带积分条件的贝塞尔算子双曲方程混合问题

Pub Date : 2023-12-15 DOI:10.1134/s00122661230130013
N. V. Zaitseva
{"title":"带积分条件的贝塞尔算子双曲方程混合问题","authors":"N. V. Zaitseva","doi":"10.1134/s00122661230130013","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The paper considers nonlocal problems with integral conditions for hyperbolic equations\nwith the Bessel differential operator whose statement substantially depends on the intervals where\nthe parameter occurring in this operator varies. The well-posedness of these problems is studied\naccording to a unified scheme based on the classical method of separation of variables, which is\nalso used to study nonclassical problems with integral conditions for equations of\nelliptic–hyperbolic type containing the Bessel operator in one or two variables as well.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator\",\"authors\":\"N. V. Zaitseva\",\"doi\":\"10.1134/s00122661230130013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The paper considers nonlocal problems with integral conditions for hyperbolic equations\\nwith the Bessel differential operator whose statement substantially depends on the intervals where\\nthe parameter occurring in this operator varies. The well-posedness of these problems is studied\\naccording to a unified scheme based on the classical method of separation of variables, which is\\nalso used to study nonclassical problems with integral conditions for equations of\\nelliptic–hyperbolic type containing the Bessel operator in one or two variables as well.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s00122661230130013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s00122661230130013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了带有贝塞尔微分算子的双曲方程的积分条件非局部问题,这些问题的表述在很大程度上取决于该算子中出现的参数变化的区间。根据基于经典变量分离法的统一方案,研究了这些问题的良好求解性,该方案也用于研究包含贝塞尔算子的单变量或双变量椭圆-双曲型方程的积分条件非经典问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Mixed Problems with Integral Conditions for Hyperbolic Equations with the Bessel Operator

Abstract

The paper considers nonlocal problems with integral conditions for hyperbolic equations with the Bessel differential operator whose statement substantially depends on the intervals where the parameter occurring in this operator varies. The well-posedness of these problems is studied according to a unified scheme based on the classical method of separation of variables, which is also used to study nonclassical problems with integral conditions for equations of elliptic–hyperbolic type containing the Bessel operator in one or two variables as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信