具有高度为一的基座理想的因子仿射 $$G_a$$ 变体

Pub Date : 2023-12-16 DOI:10.1007/s00031-023-09833-0
Kayo Masuda
{"title":"具有高度为一的基座理想的因子仿射 $$G_a$$ 变体","authors":"Kayo Masuda","doi":"10.1007/s00031-023-09833-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(X={\\text {Spec}}\\;B\\)</span> be a factorial affine variety defined over an algebraically closed field <i>k</i> of characteristic zero with a nontrivial action of the additive group <span>\\(G_a\\)</span> associated to a locally nilpotent derivation <span>\\(\\delta \\)</span> on <i>B</i>. In this article, we study <i>X</i> of dimension <span>\\(\\ge 3\\)</span> under the assumption that the plinth ideal <span>\\(\\text {pl}(\\delta )=\\delta (B)\\cap A\\)</span> is contained in an ideal <span>\\(\\alpha A\\)</span> generated by a prime element <span>\\(\\alpha \\in A={\\text {Ker}}\\,\\delta \\)</span>. Suppose that <span>\\(A={\\text {Ker}}\\,\\delta \\)</span> is an affine <i>k</i>-domain. The quotient morphism <span>\\(\\pi : X \\rightarrow Y={\\text {Spec}}\\;A\\)</span> splits to a composite <span>\\(\\textrm{pr} \\circ p\\)</span> of the projection <span>\\(\\textrm{pr}: Y\\times \\mathbb A^1 \\rightarrow Y\\)</span> and a <span>\\(G_a\\)</span>-equivariant birational morphism <span>\\(p: X \\rightarrow Y\\times \\mathbb A^1\\)</span> where <span>\\(G_a\\)</span> acts on <span>\\(\\mathbb A^1\\)</span> by translation. By decomposing <span>\\(p: X \\rightarrow Y\\times \\mathbb A^1\\)</span> to a sequence of <span>\\(G_a\\)</span>-equivariant affine modifications, we investigate the structure of <i>X</i>. We also show that the general closed fiber of <span>\\(\\pi \\)</span> over the closed set <span>\\(V(\\alpha )={\\text {Spec}}\\;A/\\alpha A\\)</span> consists of a disjoint union of <i>m</i> affine lines where <span>\\(m\\ge 2\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorial Affine $$G_a$$ -Varieties with Height One Plinth Ideals\",\"authors\":\"Kayo Masuda\",\"doi\":\"10.1007/s00031-023-09833-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(X={\\\\text {Spec}}\\\\;B\\\\)</span> be a factorial affine variety defined over an algebraically closed field <i>k</i> of characteristic zero with a nontrivial action of the additive group <span>\\\\(G_a\\\\)</span> associated to a locally nilpotent derivation <span>\\\\(\\\\delta \\\\)</span> on <i>B</i>. In this article, we study <i>X</i> of dimension <span>\\\\(\\\\ge 3\\\\)</span> under the assumption that the plinth ideal <span>\\\\(\\\\text {pl}(\\\\delta )=\\\\delta (B)\\\\cap A\\\\)</span> is contained in an ideal <span>\\\\(\\\\alpha A\\\\)</span> generated by a prime element <span>\\\\(\\\\alpha \\\\in A={\\\\text {Ker}}\\\\,\\\\delta \\\\)</span>. Suppose that <span>\\\\(A={\\\\text {Ker}}\\\\,\\\\delta \\\\)</span> is an affine <i>k</i>-domain. The quotient morphism <span>\\\\(\\\\pi : X \\\\rightarrow Y={\\\\text {Spec}}\\\\;A\\\\)</span> splits to a composite <span>\\\\(\\\\textrm{pr} \\\\circ p\\\\)</span> of the projection <span>\\\\(\\\\textrm{pr}: Y\\\\times \\\\mathbb A^1 \\\\rightarrow Y\\\\)</span> and a <span>\\\\(G_a\\\\)</span>-equivariant birational morphism <span>\\\\(p: X \\\\rightarrow Y\\\\times \\\\mathbb A^1\\\\)</span> where <span>\\\\(G_a\\\\)</span> acts on <span>\\\\(\\\\mathbb A^1\\\\)</span> by translation. By decomposing <span>\\\\(p: X \\\\rightarrow Y\\\\times \\\\mathbb A^1\\\\)</span> to a sequence of <span>\\\\(G_a\\\\)</span>-equivariant affine modifications, we investigate the structure of <i>X</i>. We also show that the general closed fiber of <span>\\\\(\\\\pi \\\\)</span> over the closed set <span>\\\\(V(\\\\alpha )={\\\\text {Spec}}\\\\;A/\\\\alpha A\\\\)</span> consists of a disjoint union of <i>m</i> affine lines where <span>\\\\(m\\\\ge 2\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09833-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09833-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(X={text {Spec}}\;B\) 是一个定义在特征为零的代数闭域 k 上的因子仿射综,它具有与 B 上的局部零势派生相关联的加法群 \(G_a\) 的非琐作用。在本文中,我们将研究维数为 \(ge 3\) 的 X,假设柱顶理想 \(\text {pl}(\delta )=\delta (B)\cap A\) 包含在由素元 \(\alpha \in A={text {Ker}}\,\delta \) 生成的理想 \(\alpha A\) 中。假设 \(A={text {Ker}\,\delta\) 是一个仿射 k 域。商变形 \(\pi : X \rightarrow Y={text {Spec}}\;A\) 分裂为投影 \(\textrm{pr} \circ p\) 的复合 \(\textrm{pr} \circ p\):Ytimes \mathbb A^1 \rightarrow Y\) 和一个 \(G_a\)-equivariant 双向变形 \(p: X \rightarrow Y\times \mathbb A^1\) 其中 \(G_a\) 通过平移作用于 \(\mathbb A^1\).通过将 \(p: X \rightarrow Y\times \mathbb A^1\)分解为一系列 \(G_a\)-equivariant affine modifications,我们研究了 X 的结构。我们还证明了在\(V(\alpha )={text {Spec}}\;A/\alpha A\) 上的闭集\(V(\alpha )={text {Spec}}\;A/\alpha A\) 上的\(\pi \)的一般闭纤维由m条仿射线(其中\(m\ge 2\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Factorial Affine $$G_a$$ -Varieties with Height One Plinth Ideals

Let \(X={\text {Spec}}\;B\) be a factorial affine variety defined over an algebraically closed field k of characteristic zero with a nontrivial action of the additive group \(G_a\) associated to a locally nilpotent derivation \(\delta \) on B. In this article, we study X of dimension \(\ge 3\) under the assumption that the plinth ideal \(\text {pl}(\delta )=\delta (B)\cap A\) is contained in an ideal \(\alpha A\) generated by a prime element \(\alpha \in A={\text {Ker}}\,\delta \). Suppose that \(A={\text {Ker}}\,\delta \) is an affine k-domain. The quotient morphism \(\pi : X \rightarrow Y={\text {Spec}}\;A\) splits to a composite \(\textrm{pr} \circ p\) of the projection \(\textrm{pr}: Y\times \mathbb A^1 \rightarrow Y\) and a \(G_a\)-equivariant birational morphism \(p: X \rightarrow Y\times \mathbb A^1\) where \(G_a\) acts on \(\mathbb A^1\) by translation. By decomposing \(p: X \rightarrow Y\times \mathbb A^1\) to a sequence of \(G_a\)-equivariant affine modifications, we investigate the structure of X. We also show that the general closed fiber of \(\pi \) over the closed set \(V(\alpha )={\text {Spec}}\;A/\alpha A\) consists of a disjoint union of m affine lines where \(m\ge 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信