科恩-格罗斯伯格神经网络系统的一般稳定性

IF 0.9 Q2 MATHEMATICS
Mohammed D. Kassim, Nasser-Eddine Tatar
{"title":"科恩-格罗斯伯格神经网络系统的一般稳定性","authors":"Mohammed D. Kassim,&nbsp;Nasser-Eddine Tatar","doi":"10.1007/s40065-023-00452-x","DOIUrl":null,"url":null,"abstract":"<div><p>Of concern is a Cohen–Grossberg neural network (<b>CGNNs</b>) system taking into account distributed and discrete delays. The class of delay kernels ensuring exponential stability existing in the previous papers is enlarged to an extended class of functions guaranteeing more general types of stability. The exponential and polynomial (or power type) type stabilities becomes particular cases of our result. This is achieved using appropriate Lyapunov-type functionals and the characteristics of the considered class.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"13 1","pages":"133 - 147"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-023-00452-x.pdf","citationCount":"0","resultStr":"{\"title\":\"General stability for a Cohen–Grossberg neural network system\",\"authors\":\"Mohammed D. Kassim,&nbsp;Nasser-Eddine Tatar\",\"doi\":\"10.1007/s40065-023-00452-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Of concern is a Cohen–Grossberg neural network (<b>CGNNs</b>) system taking into account distributed and discrete delays. The class of delay kernels ensuring exponential stability existing in the previous papers is enlarged to an extended class of functions guaranteeing more general types of stability. The exponential and polynomial (or power type) type stabilities becomes particular cases of our result. This is achieved using appropriate Lyapunov-type functionals and the characteristics of the considered class.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"13 1\",\"pages\":\"133 - 147\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-023-00452-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-023-00452-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-023-00452-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

科恩-格罗斯伯格神经网络(CGNNs)系统考虑到了分布式和离散延迟,这是一个值得关注的问题。前几篇论文中存在的保证指数稳定性的延迟核类被扩展为保证更一般类型稳定性的扩展函数类。指数型和多项式型(或幂型)稳定性成为我们结果的特殊情况。我们利用适当的 Lyapunov 型函数和所考虑类别的特征来实现这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

General stability for a Cohen–Grossberg neural network system

General stability for a Cohen–Grossberg neural network system

Of concern is a Cohen–Grossberg neural network (CGNNs) system taking into account distributed and discrete delays. The class of delay kernels ensuring exponential stability existing in the previous papers is enlarged to an extended class of functions guaranteeing more general types of stability. The exponential and polynomial (or power type) type stabilities becomes particular cases of our result. This is achieved using appropriate Lyapunov-type functionals and the characteristics of the considered class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信