微分级数代数和复拉格朗日子网格的形式化

Borislav Mladenov
{"title":"微分级数代数和复拉格朗日子网格的形式化","authors":"Borislav Mladenov","doi":"10.1007/s00029-023-00894-3","DOIUrl":null,"url":null,"abstract":"<p>Let be a compact Kähler Lagrangian in a holomorphic symplectic variety <span>\\(\\textrm{X}/\\textbf{C}\\)</span>. We use deformation quantisation to show that the endomorphism differential graded algebra <span>\\(\\textrm{RHom}\\big (i_*\\textrm{K}_\\textrm{L}^{1/2},i_*\\textrm{K}_\\textrm{L}^{1/2}\\big )\\)</span> is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of <span>\\({\\text {A}}_{\\infty }\\)</span>-modules.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formality of differential graded algebras and complex Lagrangian submanifolds\",\"authors\":\"Borislav Mladenov\",\"doi\":\"10.1007/s00029-023-00894-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let be a compact Kähler Lagrangian in a holomorphic symplectic variety <span>\\\\(\\\\textrm{X}/\\\\textbf{C}\\\\)</span>. We use deformation quantisation to show that the endomorphism differential graded algebra <span>\\\\(\\\\textrm{RHom}\\\\big (i_*\\\\textrm{K}_\\\\textrm{L}^{1/2},i_*\\\\textrm{K}_\\\\textrm{L}^{1/2}\\\\big )\\\\)</span> is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of <span>\\\\({\\\\text {A}}_{\\\\infty }\\\\)</span>-modules.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00894-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00894-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设在全形交映变中有一个紧凑的凯勒拉格朗日(Kähler Lagrangian)(\textrm{X}/\textbf{C}\)。我们使用变形量子化来证明内构微分级数代数 (\textrm{RHom}\big (i_*\textrm{K}_\textrm{L}^{1/2},i_*\textrm{K}_\textrm{L}^{1/2}\big )是形式的。我们证明了对拉格朗日的概括,以及在 \({text\ {A}}_{\infty }\)-modules 家族中形式化行为的辅助结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Formality of differential graded algebras and complex Lagrangian submanifolds

Formality of differential graded algebras and complex Lagrangian submanifolds

Let be a compact Kähler Lagrangian in a holomorphic symplectic variety \(\textrm{X}/\textbf{C}\). We use deformation quantisation to show that the endomorphism differential graded algebra \(\textrm{RHom}\big (i_*\textrm{K}_\textrm{L}^{1/2},i_*\textrm{K}_\textrm{L}^{1/2}\big )\) is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of \({\text {A}}_{\infty }\)-modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信