Sem@ K:我的知识图谱嵌入模型是语义感知的吗?

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Semantic Web Pub Date : 2023-12-13 DOI:10.3233/sw-233508
Nicolas Hubert, Pierre Monnin, Armelle Brun, Davy Monticolo
{"title":"Sem@ K:我的知识图谱嵌入模型是语义感知的吗?","authors":"Nicolas Hubert, Pierre Monnin, Armelle Brun, Davy Monticolo","doi":"10.3233/sw-233508","DOIUrl":null,"url":null,"abstract":"<h4><span>Abstract</span></h4><p>Using knowledge graph embedding models (KGEMs) is a popular approach for predicting links in knowledge graphs (KGs). Traditionally, the performance of KGEMs for link prediction is assessed using rank-based metrics, which evaluate their ability to give high scores to ground-truth entities. However, the literature claims that the KGEM evaluation procedure would benefit from adding supplementary dimensions to assess. That is why, in this paper, we extend our previously introduced metric Sem@<i>K</i> that measures the capability of models to predict valid entities w.r.t. domain and range constraints. In particular, we consider a broad range of KGs and take their respective characteristics into account to propose different versions of Sem@<i>K</i>. We also perform an extensive study to qualify the abilities of KGEMs as measured by our metric. Our experiments show that Sem@<i>K</i> provides a new perspective on KGEM quality. Its joint analysis with rank-based metrics offers different conclusions on the predictive power of models. Regarding Sem@<i>K</i>, some KGEMs are inherently better than others, but this semantic superiority is not indicative of their performance w.r.t. rank-based metrics. In this work, we generalize conclusions about the relative performance of KGEMs w.r.t. rank-based and semantic-oriented metrics at the level of families of models. The joint analysis of the aforementioned metrics gives more insight into the peculiarities of each model. This work paves the way for a more comprehensive evaluation of KGEM adequacy for specific downstream tasks.</p>","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"27 15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sem@ K: Is my knowledge graph embedding model semantic-aware?\",\"authors\":\"Nicolas Hubert, Pierre Monnin, Armelle Brun, Davy Monticolo\",\"doi\":\"10.3233/sw-233508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h4><span>Abstract</span></h4><p>Using knowledge graph embedding models (KGEMs) is a popular approach for predicting links in knowledge graphs (KGs). Traditionally, the performance of KGEMs for link prediction is assessed using rank-based metrics, which evaluate their ability to give high scores to ground-truth entities. However, the literature claims that the KGEM evaluation procedure would benefit from adding supplementary dimensions to assess. That is why, in this paper, we extend our previously introduced metric Sem@<i>K</i> that measures the capability of models to predict valid entities w.r.t. domain and range constraints. In particular, we consider a broad range of KGs and take their respective characteristics into account to propose different versions of Sem@<i>K</i>. We also perform an extensive study to qualify the abilities of KGEMs as measured by our metric. Our experiments show that Sem@<i>K</i> provides a new perspective on KGEM quality. Its joint analysis with rank-based metrics offers different conclusions on the predictive power of models. Regarding Sem@<i>K</i>, some KGEMs are inherently better than others, but this semantic superiority is not indicative of their performance w.r.t. rank-based metrics. In this work, we generalize conclusions about the relative performance of KGEMs w.r.t. rank-based and semantic-oriented metrics at the level of families of models. The joint analysis of the aforementioned metrics gives more insight into the peculiarities of each model. This work paves the way for a more comprehensive evaluation of KGEM adequacy for specific downstream tasks.</p>\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"27 15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233508\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233508","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要使用知识图嵌入模型(KGEM)预测知识图(KG)中的链接是一种流行的方法。传统上,KGEM 在链接预测方面的性能是通过基于等级的指标来评估的,这些指标评估的是 KGEM 给地面实况实体打高分的能力。然而,有文献称,KGEM 评估程序将受益于增加补充评估维度。因此,在本文中,我们扩展了之前引入的指标 Sem@K,该指标用于衡量模型在领域和范围限制下预测有效实体的能力。特别是,我们考虑了范围广泛的 KG,并将它们各自的特点考虑在内,提出了不同版本的 Sem@K。我们还开展了一项广泛的研究,通过我们的度量标准来鉴定 KGEM 的能力。我们的实验表明,Sem@K为KGEM质量提供了一个新的视角。它与基于等级的度量标准的联合分析为模型的预测能力提供了不同的结论。就 Sem@K 而言,有些 KGEM 本身就比其他 KGEM 好,但这种语义上的优势并不能说明它们在基于等级的指标方面的表现。在这项工作中,我们在模型族的层面上归纳了 KGEM 在与基于等级的指标和面向语义的指标比较时的相对性能结论。通过对上述指标的联合分析,我们可以更深入地了解每个模型的特殊性。这项工作为更全面地评估 KGEM 对特定下游任务的适当性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sem@ K: Is my knowledge graph embedding model semantic-aware?

Abstract

Using knowledge graph embedding models (KGEMs) is a popular approach for predicting links in knowledge graphs (KGs). Traditionally, the performance of KGEMs for link prediction is assessed using rank-based metrics, which evaluate their ability to give high scores to ground-truth entities. However, the literature claims that the KGEM evaluation procedure would benefit from adding supplementary dimensions to assess. That is why, in this paper, we extend our previously introduced metric Sem@K that measures the capability of models to predict valid entities w.r.t. domain and range constraints. In particular, we consider a broad range of KGs and take their respective characteristics into account to propose different versions of Sem@K. We also perform an extensive study to qualify the abilities of KGEMs as measured by our metric. Our experiments show that Sem@K provides a new perspective on KGEM quality. Its joint analysis with rank-based metrics offers different conclusions on the predictive power of models. Regarding Sem@K, some KGEMs are inherently better than others, but this semantic superiority is not indicative of their performance w.r.t. rank-based metrics. In this work, we generalize conclusions about the relative performance of KGEMs w.r.t. rank-based and semantic-oriented metrics at the level of families of models. The joint analysis of the aforementioned metrics gives more insight into the peculiarities of each model. This work paves the way for a more comprehensive evaluation of KGEM adequacy for specific downstream tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信