局部应力状态对单一载荷下不同晶格金属材料断裂机制的影响

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
G. V. Klevtsov, R. Z. Valiev, N. A. Klevtsova
{"title":"局部应力状态对单一载荷下不同晶格金属材料断裂机制的影响","authors":"G. V. Klevtsov,&nbsp;R. Z. Valiev,&nbsp;N. A. Klevtsova","doi":"10.1134/S102995992306005X","DOIUrl":null,"url":null,"abstract":"<p>The study discusses the effect of the local stress state at the crack tip on the fracture behavior of coarse- and ultrafine-grained bcc, fcc and hcp materials under single impact and static loads. The local stress state of the materials at the crack tip under impact and static loading was evaluated by the <i>h</i><sub>max</sub>/<i>t</i> ratio, where <i>h</i><sub>max</sub> is the maximum depth of the plastic zone under the fracture surface and <i>t</i> is the specimen thickness. The depth of plastic zones under the fracture surface was determined using layer-by-layer etching of the surface with subsequent X-ray diffraction analysis. The study results showed that it is not always possible to establish an unambiguous relationship between the fracture mechanisms of metallic materials and the local stress state of a material at the crack tip. Nevertheless, some particular features were found: (i) the cleavage, quasi-cleavage or intergranular brittle fracture of materials, regardless of the lattice type, is indicative of plane strain, (ii) under plane stress, all materials, regardless of the lattice type, exhibit ductile fracture with the formation of a microdimple pattern, and (iii) most fcc materials fail by a mixed mechanism in the transition region from plane strain to plane stress.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 6","pages":"656 - 665"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Local Stress State on the Fracture Mechanism of Metallic Materials with Different Lattices under Single Loads\",\"authors\":\"G. V. Klevtsov,&nbsp;R. Z. Valiev,&nbsp;N. A. Klevtsova\",\"doi\":\"10.1134/S102995992306005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study discusses the effect of the local stress state at the crack tip on the fracture behavior of coarse- and ultrafine-grained bcc, fcc and hcp materials under single impact and static loads. The local stress state of the materials at the crack tip under impact and static loading was evaluated by the <i>h</i><sub>max</sub>/<i>t</i> ratio, where <i>h</i><sub>max</sub> is the maximum depth of the plastic zone under the fracture surface and <i>t</i> is the specimen thickness. The depth of plastic zones under the fracture surface was determined using layer-by-layer etching of the surface with subsequent X-ray diffraction analysis. The study results showed that it is not always possible to establish an unambiguous relationship between the fracture mechanisms of metallic materials and the local stress state of a material at the crack tip. Nevertheless, some particular features were found: (i) the cleavage, quasi-cleavage or intergranular brittle fracture of materials, regardless of the lattice type, is indicative of plane strain, (ii) under plane stress, all materials, regardless of the lattice type, exhibit ductile fracture with the formation of a microdimple pattern, and (iii) most fcc materials fail by a mixed mechanism in the transition region from plane strain to plane stress.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"26 6\",\"pages\":\"656 - 665\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S102995992306005X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S102995992306005X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究讨论了在单次冲击和静载荷作用下,裂纹尖端的局部应力状态对粗粒和超细粒 bcc、fcc 和 hcp 材料断裂行为的影响。材料在冲击和静载荷作用下的裂纹尖端局部应力状态是通过 hmax/t 比值来评估的,其中 hmax 是断裂面下塑性区的最大深度,t 是试样厚度。断裂表面下塑性区的深度是通过逐层蚀刻表面和随后的 X 射线衍射分析确定的。研究结果表明,金属材料的断裂机制与材料在裂纹尖端的局部应力状态之间并不总是能够建立明确的关系。尽管如此,我们还是发现了一些特别的特征:(i) 无论晶格类型如何,材料的劈裂、准劈裂或晶间脆性断裂都是平面应变的表现;(ii) 在平面应力下,无论晶格类型如何,所有材料都会表现出韧性断裂,并形成微凹痕模式;(iii) 在从平面应变到平面应力的过渡区域,大多数 fcc 材料都会以混合机制断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of the Local Stress State on the Fracture Mechanism of Metallic Materials with Different Lattices under Single Loads

Effect of the Local Stress State on the Fracture Mechanism of Metallic Materials with Different Lattices under Single Loads

Effect of the Local Stress State on the Fracture Mechanism of Metallic Materials with Different Lattices under Single Loads

The study discusses the effect of the local stress state at the crack tip on the fracture behavior of coarse- and ultrafine-grained bcc, fcc and hcp materials under single impact and static loads. The local stress state of the materials at the crack tip under impact and static loading was evaluated by the hmax/t ratio, where hmax is the maximum depth of the plastic zone under the fracture surface and t is the specimen thickness. The depth of plastic zones under the fracture surface was determined using layer-by-layer etching of the surface with subsequent X-ray diffraction analysis. The study results showed that it is not always possible to establish an unambiguous relationship between the fracture mechanisms of metallic materials and the local stress state of a material at the crack tip. Nevertheless, some particular features were found: (i) the cleavage, quasi-cleavage or intergranular brittle fracture of materials, regardless of the lattice type, is indicative of plane strain, (ii) under plane stress, all materials, regardless of the lattice type, exhibit ductile fracture with the formation of a microdimple pattern, and (iii) most fcc materials fail by a mixed mechanism in the transition region from plane strain to plane stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信