{"title":"关于一类 Lebesgue-Ramanujan-Nagell 方程","authors":"Azizul Hoque","doi":"10.1007/s10998-023-00564-z","DOIUrl":null,"url":null,"abstract":"<p>We deeply investigate the Diophantine equation <span>\\(cx^2+d^{2m+1}=2y^n\\)</span> in integers <span>\\(x, y\\ge 1, m\\ge 0\\)</span> and <span>\\(n\\ge 3\\)</span>, where <i>c</i> and <i>d</i> are coprime positive integers satisfying <span>\\(cd\\not \\equiv 3 \\pmod 4\\)</span>. We first solve this equation for prime <i>n</i> under the condition <span>\\(\\gcd (n, h(-cd))=1\\)</span>, where <span>\\(h(-cd)\\)</span> denotes the class number of the imaginary quadratic field <span>\\({\\mathbb {Q}}(\\sqrt{-cd})\\)</span>. We then completely solve this equation for both <i>c</i> and <i>d</i> primes under the assumption <span>\\(\\gcd (n, h(-cd))=1\\)</span>. We also completely solve this equation for <span>\\(c=1\\)</span> and <span>\\(d\\equiv 1 \\pmod 4\\)</span> under the condition <span>\\(\\gcd (n, h(-d))=1\\)</span>. For some fixed values of <i>c</i> and <i>d</i>, we derive some results concerning the solvability of this equation.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"55 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of Lebesgue-Ramanujan-Nagell equations\",\"authors\":\"Azizul Hoque\",\"doi\":\"10.1007/s10998-023-00564-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deeply investigate the Diophantine equation <span>\\\\(cx^2+d^{2m+1}=2y^n\\\\)</span> in integers <span>\\\\(x, y\\\\ge 1, m\\\\ge 0\\\\)</span> and <span>\\\\(n\\\\ge 3\\\\)</span>, where <i>c</i> and <i>d</i> are coprime positive integers satisfying <span>\\\\(cd\\\\not \\\\equiv 3 \\\\pmod 4\\\\)</span>. We first solve this equation for prime <i>n</i> under the condition <span>\\\\(\\\\gcd (n, h(-cd))=1\\\\)</span>, where <span>\\\\(h(-cd)\\\\)</span> denotes the class number of the imaginary quadratic field <span>\\\\({\\\\mathbb {Q}}(\\\\sqrt{-cd})\\\\)</span>. We then completely solve this equation for both <i>c</i> and <i>d</i> primes under the assumption <span>\\\\(\\\\gcd (n, h(-cd))=1\\\\)</span>. We also completely solve this equation for <span>\\\\(c=1\\\\)</span> and <span>\\\\(d\\\\equiv 1 \\\\pmod 4\\\\)</span> under the condition <span>\\\\(\\\\gcd (n, h(-d))=1\\\\)</span>. For some fixed values of <i>c</i> and <i>d</i>, we derive some results concerning the solvability of this equation.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00564-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00564-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们深入研究了整数 \(x, y\ge 1, m\ge 0\) 和 \(n\ge 3\) 中的二叉方程 \(cx^2+d^{2m+1}=2y^n\) ,其中 c 和 d 是满足 \(cd\not \equiv 3 \pmod 4\) 的共正整数。我们首先在质数 n 的条件下求解这个方程(\(gcd (n, h(-cd))=1),其中\(h(-cd)\)表示虚二次域\({\mathbb {Q}}(\sqrt{-cd})\) 的类数。然后,我们在假设 \(\gcd (n, h(-cd))=1\) 的条件下对 c 和 d 素数完全求解这个方程。在(\gcd (n, h(-d))=1)的条件下,我们还可以完全求解这个方程的(c=1)和(d\equiv 1 \pmod 4\ )。对于 c 和 d 的一些固定值,我们得出了一些关于这个方程可解性的结果。
We deeply investigate the Diophantine equation \(cx^2+d^{2m+1}=2y^n\) in integers \(x, y\ge 1, m\ge 0\) and \(n\ge 3\), where c and d are coprime positive integers satisfying \(cd\not \equiv 3 \pmod 4\). We first solve this equation for prime n under the condition \(\gcd (n, h(-cd))=1\), where \(h(-cd)\) denotes the class number of the imaginary quadratic field \({\mathbb {Q}}(\sqrt{-cd})\). We then completely solve this equation for both c and d primes under the assumption \(\gcd (n, h(-cd))=1\). We also completely solve this equation for \(c=1\) and \(d\equiv 1 \pmod 4\) under the condition \(\gcd (n, h(-d))=1\). For some fixed values of c and d, we derive some results concerning the solvability of this equation.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.