算术级数上的除数之和

Pub Date : 2023-12-15 DOI:10.1007/s10998-023-00566-x
Prapanpong Pongsriiam
{"title":"算术级数上的除数之和","authors":"Prapanpong Pongsriiam","doi":"10.1007/s10998-023-00566-x","DOIUrl":null,"url":null,"abstract":"<p>For each <span>\\(s\\in {\\mathbb {R}}\\)</span> and <span>\\(n\\in {\\mathbb {N}}\\)</span>, let <span>\\(\\sigma _s(n) = \\sum _{d\\mid n}d^s\\)</span>. In this article, we study the number of sign changes in the difference <span>\\(\\sigma _s(an+b)-\\sigma _s(cn+d)\\)</span> where <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, <i>s</i> are fixed, the vectors (<i>a</i>, <i>b</i>) and (<i>c</i>, <i>d</i>) are linearly independent over <span>\\({\\mathbb {Q}}\\)</span>, and <i>n</i> runs over all positive integers. We also give several examples and propose some problems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of divisors on arithmetic progressions\",\"authors\":\"Prapanpong Pongsriiam\",\"doi\":\"10.1007/s10998-023-00566-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For each <span>\\\\(s\\\\in {\\\\mathbb {R}}\\\\)</span> and <span>\\\\(n\\\\in {\\\\mathbb {N}}\\\\)</span>, let <span>\\\\(\\\\sigma _s(n) = \\\\sum _{d\\\\mid n}d^s\\\\)</span>. In this article, we study the number of sign changes in the difference <span>\\\\(\\\\sigma _s(an+b)-\\\\sigma _s(cn+d)\\\\)</span> where <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, <i>s</i> are fixed, the vectors (<i>a</i>, <i>b</i>) and (<i>c</i>, <i>d</i>) are linearly independent over <span>\\\\({\\\\mathbb {Q}}\\\\)</span>, and <i>n</i> runs over all positive integers. We also give several examples and propose some problems.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00566-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00566-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个 s\in {\mathbb {R}}\ 和 n\in {\mathbb {N}}\, 让 \(\sigma _s(n) = \sum _{d\mid n}d^s\).在本文中,我们将研究差分 \(\sigma _s(an+b)-\sigma _s(cn+d)\)中符号变化的次数,其中 a, b, c, d, s 是固定的,向量(a, b)和(c, d)在 \({\mathbb {Q}}\) 上是线性独立的,并且 n 贯穿所有正整数。我们还给出了几个例子,并提出了一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sums of divisors on arithmetic progressions

For each \(s\in {\mathbb {R}}\) and \(n\in {\mathbb {N}}\), let \(\sigma _s(n) = \sum _{d\mid n}d^s\). In this article, we study the number of sign changes in the difference \(\sigma _s(an+b)-\sigma _s(cn+d)\) where a, b, c, d, s are fixed, the vectors (ab) and (cd) are linearly independent over \({\mathbb {Q}}\), and n runs over all positive integers. We also give several examples and propose some problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信