{"title":"算术级数上的除数之和","authors":"Prapanpong Pongsriiam","doi":"10.1007/s10998-023-00566-x","DOIUrl":null,"url":null,"abstract":"<p>For each <span>\\(s\\in {\\mathbb {R}}\\)</span> and <span>\\(n\\in {\\mathbb {N}}\\)</span>, let <span>\\(\\sigma _s(n) = \\sum _{d\\mid n}d^s\\)</span>. In this article, we study the number of sign changes in the difference <span>\\(\\sigma _s(an+b)-\\sigma _s(cn+d)\\)</span> where <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, <i>s</i> are fixed, the vectors (<i>a</i>, <i>b</i>) and (<i>c</i>, <i>d</i>) are linearly independent over <span>\\({\\mathbb {Q}}\\)</span>, and <i>n</i> runs over all positive integers. We also give several examples and propose some problems.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"90 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of divisors on arithmetic progressions\",\"authors\":\"Prapanpong Pongsriiam\",\"doi\":\"10.1007/s10998-023-00566-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For each <span>\\\\(s\\\\in {\\\\mathbb {R}}\\\\)</span> and <span>\\\\(n\\\\in {\\\\mathbb {N}}\\\\)</span>, let <span>\\\\(\\\\sigma _s(n) = \\\\sum _{d\\\\mid n}d^s\\\\)</span>. In this article, we study the number of sign changes in the difference <span>\\\\(\\\\sigma _s(an+b)-\\\\sigma _s(cn+d)\\\\)</span> where <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, <i>s</i> are fixed, the vectors (<i>a</i>, <i>b</i>) and (<i>c</i>, <i>d</i>) are linearly independent over <span>\\\\({\\\\mathbb {Q}}\\\\)</span>, and <i>n</i> runs over all positive integers. We also give several examples and propose some problems.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00566-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00566-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For each \(s\in {\mathbb {R}}\) and \(n\in {\mathbb {N}}\), let \(\sigma _s(n) = \sum _{d\mid n}d^s\). In this article, we study the number of sign changes in the difference \(\sigma _s(an+b)-\sigma _s(cn+d)\) where a, b, c, d, s are fixed, the vectors (a, b) and (c, d) are linearly independent over \({\mathbb {Q}}\), and n runs over all positive integers. We also give several examples and propose some problems.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.