{"title":"通过神经曼菲尔德动力学实现通用计算","authors":"Joan Gort","doi":"10.1162/neco_a_01631","DOIUrl":null,"url":null,"abstract":"There is growing evidence that many forms of neural computation may be implemented by low-dimensional dynamics unfolding at the population scale. However, neither the connectivity structure nor the general capabilities of these embedded dynamical processes are currently understood. In this work, the two most common formalisms of firing-rate models are evaluated using tools from analysis, topology, and nonlinear dynamics in order to provide plausible explanations for these problems. It is shown that low-rank structured connectivities predict the formation of invariant and globally attracting manifolds in all these models. Regarding the dynamics arising in these manifolds, it is proved they are topologically equivalent across the considered formalisms. This letter also shows that under the low-rank hypothesis, the flows emerging in neural manifolds, including input-driven systems, are universal, which broadens previous findings. It explores how low-dimensional orbits can bear the production of continuous sets of muscular trajectories, the implementation of central pattern generators, and the storage of memory states. These dynamics can robustly simulate any Turing machine over arbitrary bounded memory strings, virtually endowing rate models with the power of universal computation. In addition, the letter shows how the low-rank hypothesis predicts the parsimonious correlation structure observed in cortical activity. Finally, it discusses how this theory could provide a useful tool from which to study neuropsychological phenomena using mathematical methods.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 2","pages":"227-270"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of Universal Computations Through Neural Manifold Dynamics\",\"authors\":\"Joan Gort\",\"doi\":\"10.1162/neco_a_01631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is growing evidence that many forms of neural computation may be implemented by low-dimensional dynamics unfolding at the population scale. However, neither the connectivity structure nor the general capabilities of these embedded dynamical processes are currently understood. In this work, the two most common formalisms of firing-rate models are evaluated using tools from analysis, topology, and nonlinear dynamics in order to provide plausible explanations for these problems. It is shown that low-rank structured connectivities predict the formation of invariant and globally attracting manifolds in all these models. Regarding the dynamics arising in these manifolds, it is proved they are topologically equivalent across the considered formalisms. This letter also shows that under the low-rank hypothesis, the flows emerging in neural manifolds, including input-driven systems, are universal, which broadens previous findings. It explores how low-dimensional orbits can bear the production of continuous sets of muscular trajectories, the implementation of central pattern generators, and the storage of memory states. These dynamics can robustly simulate any Turing machine over arbitrary bounded memory strings, virtually endowing rate models with the power of universal computation. In addition, the letter shows how the low-rank hypothesis predicts the parsimonious correlation structure observed in cortical activity. Finally, it discusses how this theory could provide a useful tool from which to study neuropsychological phenomena using mathematical methods.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 2\",\"pages\":\"227-270\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535087/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535087/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Emergence of Universal Computations Through Neural Manifold Dynamics
There is growing evidence that many forms of neural computation may be implemented by low-dimensional dynamics unfolding at the population scale. However, neither the connectivity structure nor the general capabilities of these embedded dynamical processes are currently understood. In this work, the two most common formalisms of firing-rate models are evaluated using tools from analysis, topology, and nonlinear dynamics in order to provide plausible explanations for these problems. It is shown that low-rank structured connectivities predict the formation of invariant and globally attracting manifolds in all these models. Regarding the dynamics arising in these manifolds, it is proved they are topologically equivalent across the considered formalisms. This letter also shows that under the low-rank hypothesis, the flows emerging in neural manifolds, including input-driven systems, are universal, which broadens previous findings. It explores how low-dimensional orbits can bear the production of continuous sets of muscular trajectories, the implementation of central pattern generators, and the storage of memory states. These dynamics can robustly simulate any Turing machine over arbitrary bounded memory strings, virtually endowing rate models with the power of universal computation. In addition, the letter shows how the low-rank hypothesis predicts the parsimonious correlation structure observed in cortical activity. Finally, it discusses how this theory could provide a useful tool from which to study neuropsychological phenomena using mathematical methods.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.