{"title":"具有固定间隔交换变换的关系","authors":"Magali Jay","doi":"10.1007/s10711-023-00868-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study the group of all interval exchange transformations (IETs). Katok asked whether it contains a free subgroup. We show that for every IET <em>S</em>, there exists a dense open set <span> <span>\\(\\Omega (S)\\)</span> </span> of admissible IETs such that the group generated by <em>S</em> and any <span> <span>\\(T\\in \\Omega (S)\\)</span> </span> is not free of rank 2. This extends a result by Dahmani et al. (Groups Geom Dyn 7(4):883–910, 2013): the group generated by a generic pair of elements of IET([0;1)) is not free (assuming a suitable condition on the underlying permutation).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations with a fixed interval exchange transformation\",\"authors\":\"Magali Jay\",\"doi\":\"10.1007/s10711-023-00868-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study the group of all interval exchange transformations (IETs). Katok asked whether it contains a free subgroup. We show that for every IET <em>S</em>, there exists a dense open set <span> <span>\\\\(\\\\Omega (S)\\\\)</span> </span> of admissible IETs such that the group generated by <em>S</em> and any <span> <span>\\\\(T\\\\in \\\\Omega (S)\\\\)</span> </span> is not free of rank 2. This extends a result by Dahmani et al. (Groups Geom Dyn 7(4):883–910, 2013): the group generated by a generic pair of elements of IET([0;1)) is not free (assuming a suitable condition on the underlying permutation).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00868-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00868-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们研究了所有区间交换变换(IET)群。卡托克问它是否包含一个自由子群。我们证明,对于每一个 IET S,都存在一个可容许 IET 的密集开集 \(\Omega (S)\) ,使得由 S 和任何 \(T\in \Omega (S)\) 生成的群不是秩为 2 的自由群。这扩展了 Dahmani 等人的一个结果(Groups Geom Dyn 7(4):883-910, 2013):IET([0;1))的一般元素对所生成的群不是自由的(假设对底层置换有合适的条件)。
Relations with a fixed interval exchange transformation
Abstract
We study the group of all interval exchange transformations (IETs). Katok asked whether it contains a free subgroup. We show that for every IET S, there exists a dense open set \(\Omega (S)\) of admissible IETs such that the group generated by S and any \(T\in \Omega (S)\) is not free of rank 2. This extends a result by Dahmani et al. (Groups Geom Dyn 7(4):883–910, 2013): the group generated by a generic pair of elements of IET([0;1)) is not free (assuming a suitable condition on the underlying permutation).