{"title":"高效聚类病毒基因组序列的新型自然图谱","authors":"Harris Song, Nan Sun, Wenping Yu, Stephen Yau","doi":"10.2174/0115748936269106231025064143","DOIUrl":null,"url":null,"abstract":"Background: This study addresses the need for analyzing viral genome sequences and understanding their genetic relationships. The focus is on introducing a novel natural graph approach as a solution. Objective: The objective of this study is to demonstrate the effectiveness and advantages of the proposed natural graph approach in clustering viral genome sequences into distinct clades, subtypes, or districts. Additionally, the aim is to explore its interpretability, potential applications, and implications for pandemic control and public health interventions. Methods: The study utilizes the proposed natural graph algorithm to cluster viral genome sequences. The results are compared with existing methods and multidimensional scaling to evaluate the performance and effectiveness of the approach. Results: The natural graph approach successfully clusters viral genome sequences, providing valuable insights into viral evolution and transmission dynamics. The ability to generate directed connections between nodes enhances the interpretability of the results, facilitating the investigation of transmission pathways and viral fitness. Conclusion: The findings highlight the potential applications of the natural graph algorithm in pandemic control, transmission tracing, and vaccine design. Future research directions may involve scaling up the analysis to larger datasets and incorporating additional genetic features for improved resolution. The natural graph approach presents a promising tool for viral genomics research with implications for public health interventions.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Natural Graph for Efficient Clustering of Virus Genome Sequences\",\"authors\":\"Harris Song, Nan Sun, Wenping Yu, Stephen Yau\",\"doi\":\"10.2174/0115748936269106231025064143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: This study addresses the need for analyzing viral genome sequences and understanding their genetic relationships. The focus is on introducing a novel natural graph approach as a solution. Objective: The objective of this study is to demonstrate the effectiveness and advantages of the proposed natural graph approach in clustering viral genome sequences into distinct clades, subtypes, or districts. Additionally, the aim is to explore its interpretability, potential applications, and implications for pandemic control and public health interventions. Methods: The study utilizes the proposed natural graph algorithm to cluster viral genome sequences. The results are compared with existing methods and multidimensional scaling to evaluate the performance and effectiveness of the approach. Results: The natural graph approach successfully clusters viral genome sequences, providing valuable insights into viral evolution and transmission dynamics. The ability to generate directed connections between nodes enhances the interpretability of the results, facilitating the investigation of transmission pathways and viral fitness. Conclusion: The findings highlight the potential applications of the natural graph algorithm in pandemic control, transmission tracing, and vaccine design. Future research directions may involve scaling up the analysis to larger datasets and incorporating additional genetic features for improved resolution. The natural graph approach presents a promising tool for viral genomics research with implications for public health interventions.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936269106231025064143\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936269106231025064143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Novel Natural Graph for Efficient Clustering of Virus Genome Sequences
Background: This study addresses the need for analyzing viral genome sequences and understanding their genetic relationships. The focus is on introducing a novel natural graph approach as a solution. Objective: The objective of this study is to demonstrate the effectiveness and advantages of the proposed natural graph approach in clustering viral genome sequences into distinct clades, subtypes, or districts. Additionally, the aim is to explore its interpretability, potential applications, and implications for pandemic control and public health interventions. Methods: The study utilizes the proposed natural graph algorithm to cluster viral genome sequences. The results are compared with existing methods and multidimensional scaling to evaluate the performance and effectiveness of the approach. Results: The natural graph approach successfully clusters viral genome sequences, providing valuable insights into viral evolution and transmission dynamics. The ability to generate directed connections between nodes enhances the interpretability of the results, facilitating the investigation of transmission pathways and viral fitness. Conclusion: The findings highlight the potential applications of the natural graph algorithm in pandemic control, transmission tracing, and vaccine design. Future research directions may involve scaling up the analysis to larger datasets and incorporating additional genetic features for improved resolution. The natural graph approach presents a promising tool for viral genomics research with implications for public health interventions.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.