整合单细胞和大容量 RNA 测序揭示与肝细胞癌临床结果和潜在免疫逃避机制相关的干性表型

IF 2.4 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Xiaojing Zhu, Jiaxing Zhang, Zixin Zhang, Hongyan Yuan, Aimin xie, Nan Zhang, Mingwei wang, Minghui jiang, Yanqi Xiao, Hao Wang, Xing Wang, Yan Xu
{"title":"整合单细胞和大容量 RNA 测序揭示与肝细胞癌临床结果和潜在免疫逃避机制相关的干性表型","authors":"Xiaojing Zhu, Jiaxing Zhang, Zixin Zhang, Hongyan Yuan, Aimin xie, Nan Zhang, Mingwei wang, Minghui jiang, Yanqi Xiao, Hao Wang, Xing Wang, Yan Xu","doi":"10.2174/0115748936268168231114103440","DOIUrl":null,"url":null,"abstract":"Aims: Bulk and single-cell RNA sequencing data were analyzed to explore the association of stemness phenotype with dysfunctional anti-tumor immunity and its impact on clinical outcomes of primary and relapse HCC. Background: The stemness phenotype is gradually acquired during cancer progression; however, it remains unclear the effect of stemness phenotype on recurrence and clinical outcomes in hepatocellular carcinoma (HCC). Methods: The stemness index (mRNAsi) calculated by a one-class logistic regression algorithm in multiple HCC cohorts was defined as the stemness phenotype of the patient. Using single-cell profiling in primary or early-relapse HCC, cell stemness phenotypes were evaluated by developmental potential. Differential analysis of stemness phenotype, gene expression and interactions between primary and recurrent samples revealed the underlying immune evasion mechanisms. Results: A significant mRNAsi association with HCC patient clinical outcomes was found. The high and low mRNAsi groups had distinct tumor immune microenvironments. Cellular stemness phenotype varied by cell type. Moreover, compared with primary tumors, early-relapse tumors had increased stemness of dendritic cells and tumor cells and reduced stemness of T cells and B cells. Moreover, in relapse tumors, CD8+ T cells displayed a low stemness state, with a high exhausted state, unlike the high stemness state observed in primary HCC. Conclusions: The comprehensive characterization of the HCC stemness phenotype provides insights into the clinical outcomes and immune escape mechanisms associated with recurrence.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Single-cell and Bulk RNA Sequencing Reveals Stemness Phenotype Associated with Clinical Outcomes and Potential Immune Evasion Mechanisms in Hepatocellular Carcinoma\",\"authors\":\"Xiaojing Zhu, Jiaxing Zhang, Zixin Zhang, Hongyan Yuan, Aimin xie, Nan Zhang, Mingwei wang, Minghui jiang, Yanqi Xiao, Hao Wang, Xing Wang, Yan Xu\",\"doi\":\"10.2174/0115748936268168231114103440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aims: Bulk and single-cell RNA sequencing data were analyzed to explore the association of stemness phenotype with dysfunctional anti-tumor immunity and its impact on clinical outcomes of primary and relapse HCC. Background: The stemness phenotype is gradually acquired during cancer progression; however, it remains unclear the effect of stemness phenotype on recurrence and clinical outcomes in hepatocellular carcinoma (HCC). Methods: The stemness index (mRNAsi) calculated by a one-class logistic regression algorithm in multiple HCC cohorts was defined as the stemness phenotype of the patient. Using single-cell profiling in primary or early-relapse HCC, cell stemness phenotypes were evaluated by developmental potential. Differential analysis of stemness phenotype, gene expression and interactions between primary and recurrent samples revealed the underlying immune evasion mechanisms. Results: A significant mRNAsi association with HCC patient clinical outcomes was found. The high and low mRNAsi groups had distinct tumor immune microenvironments. Cellular stemness phenotype varied by cell type. Moreover, compared with primary tumors, early-relapse tumors had increased stemness of dendritic cells and tumor cells and reduced stemness of T cells and B cells. Moreover, in relapse tumors, CD8+ T cells displayed a low stemness state, with a high exhausted state, unlike the high stemness state observed in primary HCC. Conclusions: The comprehensive characterization of the HCC stemness phenotype provides insights into the clinical outcomes and immune escape mechanisms associated with recurrence.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936268168231114103440\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936268168231114103440","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过分析大量和单细胞 RNA 测序数据,探讨干性表型与抗肿瘤免疫功能失调的关联及其对原发性和复发性 HCC 临床预后的影响。研究背景干性表型是在癌症进展过程中逐渐获得的;然而,干性表型对肝细胞癌(HCC)复发和临床预后的影响仍不清楚。研究方法在多个HCC队列中通过单类逻辑回归算法计算出的干性指数(mRNAsi)被定义为患者的干性表型。在原发性或早期复发的HCC中使用单细胞图谱,通过发育潜能评估细胞的干性表型。对原发样本和复发样本的干性表型、基因表达和相互作用的差异分析揭示了潜在的免疫逃避机制。结果显示发现mRNAsi与HCC患者的临床结果有明显的关联。高mRNAsi组和低mRNAsi组具有不同的肿瘤免疫微环境。细胞干表型因细胞类型而异。此外,与原发性肿瘤相比,早期复发肿瘤的树突状细胞和肿瘤细胞的干性增强,而T细胞和B细胞的干性降低。此外,在复发肿瘤中,CD8+ T细胞显示出低干性状态和高耗竭状态,这与原发性HCC中观察到的高干性状态不同。结论对HCC干性表型的全面描述有助于深入了解与复发相关的临床结果和免疫逃逸机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Single-cell and Bulk RNA Sequencing Reveals Stemness Phenotype Associated with Clinical Outcomes and Potential Immune Evasion Mechanisms in Hepatocellular Carcinoma
Aims: Bulk and single-cell RNA sequencing data were analyzed to explore the association of stemness phenotype with dysfunctional anti-tumor immunity and its impact on clinical outcomes of primary and relapse HCC. Background: The stemness phenotype is gradually acquired during cancer progression; however, it remains unclear the effect of stemness phenotype on recurrence and clinical outcomes in hepatocellular carcinoma (HCC). Methods: The stemness index (mRNAsi) calculated by a one-class logistic regression algorithm in multiple HCC cohorts was defined as the stemness phenotype of the patient. Using single-cell profiling in primary or early-relapse HCC, cell stemness phenotypes were evaluated by developmental potential. Differential analysis of stemness phenotype, gene expression and interactions between primary and recurrent samples revealed the underlying immune evasion mechanisms. Results: A significant mRNAsi association with HCC patient clinical outcomes was found. The high and low mRNAsi groups had distinct tumor immune microenvironments. Cellular stemness phenotype varied by cell type. Moreover, compared with primary tumors, early-relapse tumors had increased stemness of dendritic cells and tumor cells and reduced stemness of T cells and B cells. Moreover, in relapse tumors, CD8+ T cells displayed a low stemness state, with a high exhausted state, unlike the high stemness state observed in primary HCC. Conclusions: The comprehensive characterization of the HCC stemness phenotype provides insights into the clinical outcomes and immune escape mechanisms associated with recurrence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信