塔什金诺夫树注释证明

IF 0.6 4区 数学 Q3 MATHEMATICS
András Sebő
{"title":"塔什金诺夫树注释证明","authors":"András Sebő","doi":"10.1007/s00373-023-02712-1","DOIUrl":null,"url":null,"abstract":"<p>Tashkinov-trees have been used as a tool for proving bounds on the chromatic index, and are becoming a fundamental tool for edge-coloring. Was its publication in a language different from English an obstacle for the accessibility of a clean and complete proof of Tashkinov’s fundamental theorem? Tashkinov’s original, Russian paper offers a clear presentation of this theorem and its proof. The theorem itself has been well understood and successfully applied, but the proof is more difficult. It builds a truly amazing recursive machine, where the various cases necessitate a refined and polished analysis to fit into one another with surprising smoothness and accuracy. The difficulties were brilliantly unknotted by the author, deserving repeated attention. The present work is the result of reading, translating, reorganizing, rewriting, completing, shortcutting and annotating Tashkinov’s proof. It is essentially the same proof, with non-negligeable communicational differences though, for instance completing it wherever it occurred to be necessary, and simplifying it whenever it appeared to be possible, at the same time trying to adapt it to the habits and taste of the international graph theory community.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"32 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tashkinov-Trees: An Annotated Proof\",\"authors\":\"András Sebő\",\"doi\":\"10.1007/s00373-023-02712-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tashkinov-trees have been used as a tool for proving bounds on the chromatic index, and are becoming a fundamental tool for edge-coloring. Was its publication in a language different from English an obstacle for the accessibility of a clean and complete proof of Tashkinov’s fundamental theorem? Tashkinov’s original, Russian paper offers a clear presentation of this theorem and its proof. The theorem itself has been well understood and successfully applied, but the proof is more difficult. It builds a truly amazing recursive machine, where the various cases necessitate a refined and polished analysis to fit into one another with surprising smoothness and accuracy. The difficulties were brilliantly unknotted by the author, deserving repeated attention. The present work is the result of reading, translating, reorganizing, rewriting, completing, shortcutting and annotating Tashkinov’s proof. It is essentially the same proof, with non-negligeable communicational differences though, for instance completing it wherever it occurred to be necessary, and simplifying it whenever it appeared to be possible, at the same time trying to adapt it to the habits and taste of the international graph theory community.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02712-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02712-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

塔什基诺夫树已被用作证明色度指数界限的工具,并正在成为边缘着色的基本工具。塔什金诺夫的论文以不同于英语的语言发表,这是否阻碍了塔什金诺夫基本定理的简洁而完整的证明?塔什金诺夫的俄文原著清楚地介绍了这一定理及其证明。定理本身已被很好地理解和成功地应用,但证明却更为困难。它构建了一个真正令人惊叹的递归机器,其中的各种情况都需要经过精炼和完善的分析,才能以惊人的平滑性和准确性相互契合。作者出色地解开了这些难题,值得反复关注。本著作是对塔什金诺夫的证明进行阅读、翻译、重组、改写、补全、简化和注释的结果。它基本上是同一个证明,但在交流上有不可忽略的差异,例如,在必要的地方加以补充,在可能的地方加以简化,同时努力使其适应国际图论界的习惯和口味。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tashkinov-Trees: An Annotated Proof

Tashkinov-trees have been used as a tool for proving bounds on the chromatic index, and are becoming a fundamental tool for edge-coloring. Was its publication in a language different from English an obstacle for the accessibility of a clean and complete proof of Tashkinov’s fundamental theorem? Tashkinov’s original, Russian paper offers a clear presentation of this theorem and its proof. The theorem itself has been well understood and successfully applied, but the proof is more difficult. It builds a truly amazing recursive machine, where the various cases necessitate a refined and polished analysis to fit into one another with surprising smoothness and accuracy. The difficulties were brilliantly unknotted by the author, deserving repeated attention. The present work is the result of reading, translating, reorganizing, rewriting, completing, shortcutting and annotating Tashkinov’s proof. It is essentially the same proof, with non-negligeable communicational differences though, for instance completing it wherever it occurred to be necessary, and simplifying it whenever it appeared to be possible, at the same time trying to adapt it to the habits and taste of the international graph theory community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信