多个二方图的图兰数

IF 0.6 4区 数学 Q3 MATHEMATICS
Ye Wang, Yusheng Li, Yan Li
{"title":"多个二方图的图兰数","authors":"Ye Wang, Yusheng Li, Yan Li","doi":"10.1007/s00373-023-02731-y","DOIUrl":null,"url":null,"abstract":"<p>For graphs <span>\\(H_1,H_2,\\dots ,H_k\\)</span>, the <i>k</i>-color Turán number <span>\\(ex(n,H_1,H_2,\\dots ,H_k)\\)</span> is the maximum number of edges in a <i>k</i>-colored graph of order <i>n</i> that does not contain monochromatic <span>\\(H_i\\)</span> in color <i>i</i> as a subgraph, where <span>\\(1\\le i\\le k\\)</span>. In this note, we show that if <span>\\(H_i\\)</span> is a bipartite graph with at least two edges for <span>\\(1\\le i\\le k\\)</span>, then <span>\\(ex(n,H_1,H_2,\\dots ,H_k)=(1+o(1))\\sum _{i=1}^kex(n,H_i)\\)</span> as <span>\\(n\\rightarrow \\infty \\)</span>, in which the non-constructive proof for some cases can be derandomized.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán Numbers of Several Bipartite Graphs\",\"authors\":\"Ye Wang, Yusheng Li, Yan Li\",\"doi\":\"10.1007/s00373-023-02731-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For graphs <span>\\\\(H_1,H_2,\\\\dots ,H_k\\\\)</span>, the <i>k</i>-color Turán number <span>\\\\(ex(n,H_1,H_2,\\\\dots ,H_k)\\\\)</span> is the maximum number of edges in a <i>k</i>-colored graph of order <i>n</i> that does not contain monochromatic <span>\\\\(H_i\\\\)</span> in color <i>i</i> as a subgraph, where <span>\\\\(1\\\\le i\\\\le k\\\\)</span>. In this note, we show that if <span>\\\\(H_i\\\\)</span> is a bipartite graph with at least two edges for <span>\\\\(1\\\\le i\\\\le k\\\\)</span>, then <span>\\\\(ex(n,H_1,H_2,\\\\dots ,H_k)=(1+o(1))\\\\sum _{i=1}^kex(n,H_i)\\\\)</span> as <span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span>, in which the non-constructive proof for some cases can be derandomized.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02731-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02731-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图(H_1,H_2,\dots ,H_k\),k-color Turán number \(ex(n,H_1,H_2,\dots ,H_k)\)是阶数为 n 的 k-color图中不包含颜色 i 的单色图(H_i\)作为子图的最大边数,其中 \(1\le i\le k\).在本说明中,我们将证明如果 \(H_i\) 是一个至少有两条边的二(2)方图,那么 \(ex(n,H_1,H_2,\dots 、H_k)=(1+o(1))sum _{i=1}^kex(n,H_i)\) as \(n\rightarrow \infty \), in which the non-constructive proof for some cases can be derandomized.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán Numbers of Several Bipartite Graphs

For graphs \(H_1,H_2,\dots ,H_k\), the k-color Turán number \(ex(n,H_1,H_2,\dots ,H_k)\) is the maximum number of edges in a k-colored graph of order n that does not contain monochromatic \(H_i\) in color i as a subgraph, where \(1\le i\le k\). In this note, we show that if \(H_i\) is a bipartite graph with at least two edges for \(1\le i\le k\), then \(ex(n,H_1,H_2,\dots ,H_k)=(1+o(1))\sum _{i=1}^kex(n,H_i)\) as \(n\rightarrow \infty \), in which the non-constructive proof for some cases can be derandomized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信