{"title":"特征函数高 Lp 规范的增长:大地梁的应用","authors":"Yaiza Canzani, Jeffrey Galkowski","doi":"10.2140/apde.2023.16.2267","DOIUrl":null,"url":null,"abstract":"<p>This work concerns <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> norms of high energy Laplace eigenfunctions: <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>−</mo><msub><mrow><mi mathvariant=\"normal\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub>\n<mo>−</mo> <msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub>\n<mo>=</mo> <mn>0</mn></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∥</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub><msub><mrow><mo>∥</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub>\n<mo>=</mo> <mn>1</mn></math>. Sogge (1988) gave optimal estimates on the growth of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∥</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub><msub><mrow><mo>∥</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></msub></math> for a general compact Riemannian manifold. Here we give general dynamical conditions guaranteeing quantitative improvements in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> estimates for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>></mo> <msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub></math> is the critical exponent. We also apply results of an earlier paper (Canzani and Galkowski 2018) to obtain quantitative improvements in concrete geometric settings including all product manifolds. These are the first results giving quantitative improvements for estimates on the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> growth of eigenfunctions that only require dynamical assumptions. In contrast with previous improvements, our assumptions are local in the sense that they depend only on the geodesics passing through a shrinking neighborhood of a given set in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>. Moreover, we give a structure theorem for eigenfunctions which saturate the quantitatively improved <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> bound. Modulo an error, the theorem describes these eigenfunctions as finite sums of quasimodes which, roughly, approximate zonal harmonics on the sphere scaled by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>∕</mo><msqrt><mrow><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo> <!--nolimits-->\n<mi>λ</mi></mrow></msqrt></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of high Lp norms for eigenfunctions : an application of geodesic beams\",\"authors\":\"Yaiza Canzani, Jeffrey Galkowski\",\"doi\":\"10.2140/apde.2023.16.2267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work concerns <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> norms of high energy Laplace eigenfunctions: <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msub><mrow><mi mathvariant=\\\"normal\\\">Δ</mi></mrow><mrow><mi>g</mi></mrow></msub>\\n<mo>−</mo> <msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub>\\n<mo>=</mo> <mn>0</mn></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>∥</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub><msub><mrow><mo>∥</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub>\\n<mo>=</mo> <mn>1</mn></math>. Sogge (1988) gave optimal estimates on the growth of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo>∥</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>λ</mi></mrow></msub><msub><mrow><mo>∥</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></msub></math> for a general compact Riemannian manifold. Here we give general dynamical conditions guaranteeing quantitative improvements in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> estimates for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>></mo> <msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub></math> is the critical exponent. We also apply results of an earlier paper (Canzani and Galkowski 2018) to obtain quantitative improvements in concrete geometric settings including all product manifolds. These are the first results giving quantitative improvements for estimates on the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> growth of eigenfunctions that only require dynamical assumptions. In contrast with previous improvements, our assumptions are local in the sense that they depend only on the geodesics passing through a shrinking neighborhood of a given set in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>. Moreover, we give a structure theorem for eigenfunctions which saturate the quantitatively improved <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math> bound. Modulo an error, the theorem describes these eigenfunctions as finite sums of quasimodes which, roughly, approximate zonal harmonics on the sphere scaled by <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>∕</mo><msqrt><mrow><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo> <!--nolimits-->\\n<mi>λ</mi></mrow></msqrt></math>. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2023.16.2267\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
这项工作涉及高能拉普拉斯特征函数的 Lp 规范:(-Δg- λ2)ϕλ= 0,∥jλ∥L2= 1。Sogge(1988)给出了一般紧凑黎曼流形的∥jλ∥Lp增长的最优估计值。在这里,我们给出了一般动力学条件,以保证对 p> pc 的 Lp 估计的定量改进,其中 pc 是临界指数。我们还应用了早先一篇论文(Canzani 和 Galkowski 2018)的结果,在包括所有乘积流形在内的具体几何环境中获得了定量改进。这些是对特征函数 Lp 增长的估计进行定量改进的第一个结果,只需要动力学假设。与以往的改进不同,我们的假设是局部的,即只取决于通过 M 中给定集合的缩小邻域的大地线。在不考虑误差的情况下,该定理将这些特征函数描述为准模的有限和,这些准模大致近似于球面上按 1∕log λ 缩放的带状谐波。
Growth of high Lp norms for eigenfunctions : an application of geodesic beams
This work concerns norms of high energy Laplace eigenfunctions: , . Sogge (1988) gave optimal estimates on the growth of for a general compact Riemannian manifold. Here we give general dynamical conditions guaranteeing quantitative improvements in estimates for , where is the critical exponent. We also apply results of an earlier paper (Canzani and Galkowski 2018) to obtain quantitative improvements in concrete geometric settings including all product manifolds. These are the first results giving quantitative improvements for estimates on the growth of eigenfunctions that only require dynamical assumptions. In contrast with previous improvements, our assumptions are local in the sense that they depend only on the geodesics passing through a shrinking neighborhood of a given set in . Moreover, we give a structure theorem for eigenfunctions which saturate the quantitatively improved bound. Modulo an error, the theorem describes these eigenfunctions as finite sums of quasimodes which, roughly, approximate zonal harmonics on the sphere scaled by .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.