将整数分割为小幂的中心极限定理

Gabriel F. Lipnik, Manfred G. Madritsch, Robert F. Tichy
{"title":"将整数分割为小幂的中心极限定理","authors":"Gabriel F. Lipnik, Manfred G. Madritsch, Robert F. Tichy","doi":"10.1007/s00605-023-01926-y","DOIUrl":null,"url":null,"abstract":"<p>The study of the well-known partition function <i>p</i>(<i>n</i>) counting the number of solutions to <span>\\(n = a_{1} + \\dots + a_{\\ell }\\)</span> with integers <span>\\(1 \\le a_{1} \\le \\dots \\le a_{\\ell }\\)</span> has a long history in number theory and combinatorics. In this paper, we study a variant, namely partitions of integers into </p><span>$$\\begin{aligned} n=\\left\\lfloor a_1^\\alpha \\right\\rfloor +\\cdots +\\left\\lfloor a_\\ell ^\\alpha \\right\\rfloor \\end{aligned}$$</span><p>with <span>\\(1\\le a_1&lt; \\cdots &lt; a_\\ell \\)</span> and some fixed <span>\\(0&lt; \\alpha &lt; 1\\)</span>. In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle-point method.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A central limit theorem for integer partitions into small powers\",\"authors\":\"Gabriel F. Lipnik, Manfred G. Madritsch, Robert F. Tichy\",\"doi\":\"10.1007/s00605-023-01926-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of the well-known partition function <i>p</i>(<i>n</i>) counting the number of solutions to <span>\\\\(n = a_{1} + \\\\dots + a_{\\\\ell }\\\\)</span> with integers <span>\\\\(1 \\\\le a_{1} \\\\le \\\\dots \\\\le a_{\\\\ell }\\\\)</span> has a long history in number theory and combinatorics. In this paper, we study a variant, namely partitions of integers into </p><span>$$\\\\begin{aligned} n=\\\\left\\\\lfloor a_1^\\\\alpha \\\\right\\\\rfloor +\\\\cdots +\\\\left\\\\lfloor a_\\\\ell ^\\\\alpha \\\\right\\\\rfloor \\\\end{aligned}$$</span><p>with <span>\\\\(1\\\\le a_1&lt; \\\\cdots &lt; a_\\\\ell \\\\)</span> and some fixed <span>\\\\(0&lt; \\\\alpha &lt; 1\\\\)</span>. In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle-point method.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01926-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01926-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知的分区函数 p(n) 是计算 \(n = a_{1} + \dots + a_{\ell }\) 的解的个数,而 \(1 \le a_{1} \le \dots \le a_{\ell }\) 在数论和组合学中有着悠久的历史。在本文中,我们研究一种变体,即把整数分割成 $$begin{aligned} n=left\floor a_1^alpha\right\rfloor +\cdots +\left\lfloor a__\ell ^alpha\right\rfloor\end{aligned}$$with\(1\le a_1<;\cdots<a_ell)和一些固定的(0<\alpha<1)。特别是,我们利用鞍点法证明了这种分区中求和数的中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A central limit theorem for integer partitions into small powers

The study of the well-known partition function p(n) counting the number of solutions to \(n = a_{1} + \dots + a_{\ell }\) with integers \(1 \le a_{1} \le \dots \le a_{\ell }\) has a long history in number theory and combinatorics. In this paper, we study a variant, namely partitions of integers into

$$\begin{aligned} n=\left\lfloor a_1^\alpha \right\rfloor +\cdots +\left\lfloor a_\ell ^\alpha \right\rfloor \end{aligned}$$

with \(1\le a_1< \cdots < a_\ell \) and some fixed \(0< \alpha < 1\). In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle-point method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信