{"title":"均匀磁场和会聚磁场中的射频线性等离子体装置的特性分析","authors":"Kazunori Takahashi, Yume Teranishi","doi":"10.1088/1361-6595/ad0fb0","DOIUrl":null,"url":null,"abstract":"A linear radiofrequency plasma device is constructed, where a source operating at a frequency of 13.56 MHz and a maximum power of several kW is attached to a cylindrical vacuum chamber about 1 m in length. Seven solenoids are located around the source and the chamber, providing various magnetic field configurations by changing the solenoid currents. The plasma density of the radiofrequency linear plasma device is initially characterized in uniform and convergent magnetic field configurations. A blue mode argon plasma, being inherent to the helicon or high-density discharge, is observed in the chamber downstream of the source for both configurations, while the density near the antenna is lower than that in the chamber. Furthermore, the density for the convergent magnetic field configuration is found to be larger than that for the uniform case, providing a maximum density of about <inline-formula>\n<tex-math><?CDATA $2\\times10^{19}~\\textrm{m}^{-3}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mn>19</mml:mn></mml:mrow></mml:msup><mml:mtext> </mml:mtext><mml:msup><mml:mrow><mml:mtext>m</mml:mtext></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"psstad0fb0ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Spatiotemporal measurements of the ion saturation current reveal that the density peak is formed near the rf antenna at the initial time of the discharge and the peripheral high-density region subsequently appears downstream of the antenna, implying that the rf power is efficiently coupled with the electrons downstream of the antenna once the initial plasma is created. A few ms after turning on the rf power, the density over the whole region reduces, which seems to be due to a neutral depletion.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a radiofrequency linear plasma device in uniform and convergent magnetic fields\",\"authors\":\"Kazunori Takahashi, Yume Teranishi\",\"doi\":\"10.1088/1361-6595/ad0fb0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear radiofrequency plasma device is constructed, where a source operating at a frequency of 13.56 MHz and a maximum power of several kW is attached to a cylindrical vacuum chamber about 1 m in length. Seven solenoids are located around the source and the chamber, providing various magnetic field configurations by changing the solenoid currents. The plasma density of the radiofrequency linear plasma device is initially characterized in uniform and convergent magnetic field configurations. A blue mode argon plasma, being inherent to the helicon or high-density discharge, is observed in the chamber downstream of the source for both configurations, while the density near the antenna is lower than that in the chamber. Furthermore, the density for the convergent magnetic field configuration is found to be larger than that for the uniform case, providing a maximum density of about <inline-formula>\\n<tex-math><?CDATA $2\\\\times10^{19}~\\\\textrm{m}^{-3}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mn>19</mml:mn></mml:mrow></mml:msup><mml:mtext> </mml:mtext><mml:msup><mml:mrow><mml:mtext>m</mml:mtext></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"psstad0fb0ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Spatiotemporal measurements of the ion saturation current reveal that the density peak is formed near the rf antenna at the initial time of the discharge and the peripheral high-density region subsequently appears downstream of the antenna, implying that the rf power is efficiently coupled with the electrons downstream of the antenna once the initial plasma is created. A few ms after turning on the rf power, the density over the whole region reduces, which seems to be due to a neutral depletion.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad0fb0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad0fb0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of a radiofrequency linear plasma device in uniform and convergent magnetic fields
A linear radiofrequency plasma device is constructed, where a source operating at a frequency of 13.56 MHz and a maximum power of several kW is attached to a cylindrical vacuum chamber about 1 m in length. Seven solenoids are located around the source and the chamber, providing various magnetic field configurations by changing the solenoid currents. The plasma density of the radiofrequency linear plasma device is initially characterized in uniform and convergent magnetic field configurations. A blue mode argon plasma, being inherent to the helicon or high-density discharge, is observed in the chamber downstream of the source for both configurations, while the density near the antenna is lower than that in the chamber. Furthermore, the density for the convergent magnetic field configuration is found to be larger than that for the uniform case, providing a maximum density of about 2×1019m−3. Spatiotemporal measurements of the ion saturation current reveal that the density peak is formed near the rf antenna at the initial time of the discharge and the peripheral high-density region subsequently appears downstream of the antenna, implying that the rf power is efficiently coupled with the electrons downstream of the antenna once the initial plasma is created. A few ms after turning on the rf power, the density over the whole region reduces, which seems to be due to a neutral depletion.