Wensheng Zhao, Qizhen Hong, Chao Yang, Quanhua Sun, Yuan Hu
{"title":"空气等离子体中电子激发原子的碰撞积分。I. N-N 和 O-O 相互作用","authors":"Wensheng Zhao, Qizhen Hong, Chao Yang, Quanhua Sun, Yuan Hu","doi":"10.1088/1361-6595/ad0edf","DOIUrl":null,"url":null,"abstract":"The current work presents the collision integral data for N(<sup>4</sup>\n<italic toggle=\"yes\">S</italic>)–N(<sup>4</sup>\n<italic toggle=\"yes\">S</italic>, <sup>2</sup>\n<italic toggle=\"yes\">D</italic>, <sup>2</sup>\n<italic toggle=\"yes\">P</italic>) and O(<sup>3</sup>\n<italic toggle=\"yes\">P</italic>, <sup>1</sup>\n<italic toggle=\"yes\">D</italic>, <sup>1</sup>\n<italic toggle=\"yes\">S</italic>)–O(<sup>3</sup>\n<italic toggle=\"yes\">P</italic>, <sup>1</sup>\n<italic toggle=\"yes\">D</italic>, <sup>1</sup>\n<italic toggle=\"yes\">S</italic>) interactions in the temperature range of 500–50 000 K. The collision integrals are calculated based on high-quality potential energy curves (PECs) obtained from fitting the high-level <inline-formula>\n<tex-math><?CDATA $ab~initio$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>a</mml:mi><mml:mi>b</mml:mi><mml:mtext> </mml:mtext><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mi>i</mml:mi><mml:mi>t</mml:mi><mml:mi>i</mml:mi><mml:mi>o</mml:mi></mml:math>\n<inline-graphic xlink:href=\"psstad0edfieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> calculation data in a wide energy range to the neural network (NN) functions. In the construction of PECs, the diabatic PECs are adopted when avoided crossings exist because the diabatic paths are much more likely to be followed for such situations. Moreover, the nonadiabatic transition effects are estimated to be negligible for PECs crossings. The accuracy of traditional analytical formulas to fit PECs are also examined. It is found that the collision integral calculations are sensitive to the accuracy of PECs and the NN based PECs overwhelm the others. The contribution of inelastic excitation exchange processes to the diffusion collision integrals are also computed by using an accurate evaluation of the differences of PECs for <italic toggle=\"yes\">gerade</italic> and <italic toggle=\"yes\">ungerade</italic> pairs of excited atoms. Finally, based on the new collision integral data, we calibrate the collision model parameters suitable for the widely used particle simulation methods. The collision integrals and collision models developed in this work can be used to support high-confidence simulations of weakly ionized air plasma problems.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision integrals of electronically excited atoms in air plasmas. I. N–N and O–O interactions\",\"authors\":\"Wensheng Zhao, Qizhen Hong, Chao Yang, Quanhua Sun, Yuan Hu\",\"doi\":\"10.1088/1361-6595/ad0edf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work presents the collision integral data for N(<sup>4</sup>\\n<italic toggle=\\\"yes\\\">S</italic>)–N(<sup>4</sup>\\n<italic toggle=\\\"yes\\\">S</italic>, <sup>2</sup>\\n<italic toggle=\\\"yes\\\">D</italic>, <sup>2</sup>\\n<italic toggle=\\\"yes\\\">P</italic>) and O(<sup>3</sup>\\n<italic toggle=\\\"yes\\\">P</italic>, <sup>1</sup>\\n<italic toggle=\\\"yes\\\">D</italic>, <sup>1</sup>\\n<italic toggle=\\\"yes\\\">S</italic>)–O(<sup>3</sup>\\n<italic toggle=\\\"yes\\\">P</italic>, <sup>1</sup>\\n<italic toggle=\\\"yes\\\">D</italic>, <sup>1</sup>\\n<italic toggle=\\\"yes\\\">S</italic>) interactions in the temperature range of 500–50 000 K. The collision integrals are calculated based on high-quality potential energy curves (PECs) obtained from fitting the high-level <inline-formula>\\n<tex-math><?CDATA $ab~initio$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>a</mml:mi><mml:mi>b</mml:mi><mml:mtext> </mml:mtext><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mi>i</mml:mi><mml:mi>t</mml:mi><mml:mi>i</mml:mi><mml:mi>o</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"psstad0edfieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> calculation data in a wide energy range to the neural network (NN) functions. In the construction of PECs, the diabatic PECs are adopted when avoided crossings exist because the diabatic paths are much more likely to be followed for such situations. Moreover, the nonadiabatic transition effects are estimated to be negligible for PECs crossings. The accuracy of traditional analytical formulas to fit PECs are also examined. It is found that the collision integral calculations are sensitive to the accuracy of PECs and the NN based PECs overwhelm the others. The contribution of inelastic excitation exchange processes to the diffusion collision integrals are also computed by using an accurate evaluation of the differences of PECs for <italic toggle=\\\"yes\\\">gerade</italic> and <italic toggle=\\\"yes\\\">ungerade</italic> pairs of excited atoms. Finally, based on the new collision integral data, we calibrate the collision model parameters suitable for the widely used particle simulation methods. The collision integrals and collision models developed in this work can be used to support high-confidence simulations of weakly ionized air plasma problems.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad0edf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad0edf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了在 500-50 000 K 温度范围内 N(4S)-N(4S,2D,2P) 和 O(3P,1D,1S)-O(3P,1D,1S) 相互作用的碰撞积分数据。碰撞积分是根据神经网络(NN)函数在宽能量范围内拟合高水平 ab initio 计算数据而得到的高质量势能曲线(PEC)计算的。在构建势能曲线时,如果存在避免交叉的情况,则采用二消旋势能曲线,因为在这种情况下,二消旋路径更有可能被遵循。此外,据估计,非绝热过渡效应在 PECs 交叉时可以忽略不计。此外,还考察了拟合 PEC 的传统分析公式的准确性。结果发现,碰撞积分计算对 PECs 的准确性非常敏感,而基于 NN 的 PECs 则压倒了其他公式。通过精确评估激发原子对的gerade 和 ungerade 的 PECs 差异,还计算了非弹性激发交换过程对扩散碰撞积分的贡献。最后,根据新的碰撞积分数据,我们校准了适用于广泛使用的粒子模拟方法的碰撞模型参数。本研究开发的碰撞积分和碰撞模型可用于支持弱电离空气等离子体问题的高可信度模拟。
Collision integrals of electronically excited atoms in air plasmas. I. N–N and O–O interactions
The current work presents the collision integral data for N(4S)–N(4S, 2D, 2P) and O(3P, 1D, 1S)–O(3P, 1D, 1S) interactions in the temperature range of 500–50 000 K. The collision integrals are calculated based on high-quality potential energy curves (PECs) obtained from fitting the high-level abinitio calculation data in a wide energy range to the neural network (NN) functions. In the construction of PECs, the diabatic PECs are adopted when avoided crossings exist because the diabatic paths are much more likely to be followed for such situations. Moreover, the nonadiabatic transition effects are estimated to be negligible for PECs crossings. The accuracy of traditional analytical formulas to fit PECs are also examined. It is found that the collision integral calculations are sensitive to the accuracy of PECs and the NN based PECs overwhelm the others. The contribution of inelastic excitation exchange processes to the diffusion collision integrals are also computed by using an accurate evaluation of the differences of PECs for gerade and ungerade pairs of excited atoms. Finally, based on the new collision integral data, we calibrate the collision model parameters suitable for the widely used particle simulation methods. The collision integrals and collision models developed in this work can be used to support high-confidence simulations of weakly ionized air plasma problems.