具有负分散性的 Whitham-Broer-Kaup 方程的良好拟合

Nabil Bedjaoui, Youcef Mammeri
{"title":"具有负分散性的 Whitham-Broer-Kaup 方程的良好拟合","authors":"Nabil Bedjaoui, Youcef Mammeri","doi":"10.1007/s00030-023-00899-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we discuss the well-posedness of Whitham-Broer-Kaup equation with negative dispersion term. A symmetrizer is built, then we prove the existence and uniqueness of a solution using the vanishing viscosity method.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of Whitham-Broer-Kaup equation with negative dispersion\",\"authors\":\"Nabil Bedjaoui, Youcef Mammeri\",\"doi\":\"10.1007/s00030-023-00899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we discuss the well-posedness of Whitham-Broer-Kaup equation with negative dispersion term. A symmetrizer is built, then we prove the existence and uniqueness of a solution using the vanishing viscosity method.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00899-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00899-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们讨论了带有负分散项的 Whitham-Broer-Kaup 方程的好求解性。我们建立了一个对称器,然后用粘度消失法证明了解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of Whitham-Broer-Kaup equation with negative dispersion

In this work, we discuss the well-posedness of Whitham-Broer-Kaup equation with negative dispersion term. A symmetrizer is built, then we prove the existence and uniqueness of a solution using the vanishing viscosity method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信