无变结构合作椭圆系统的存在与不存在结果

John Villavert
{"title":"无变结构合作椭圆系统的存在与不存在结果","authors":"John Villavert","doi":"10.1007/s00030-023-00896-2","DOIUrl":null,"url":null,"abstract":"<p>We consider general cooperative elliptic systems possibly without variational structure and with differential operator resembling that from an Euler–Lagrange equation for a sharp Hardy–Sobolev inequality. Under suitable growth conditions on the source nonlinearities and geometric assumptions on the domain, we derive various existence and non-existence results and Liouville theorems. The results are obtained by incorporating and adapting various techniques, including variants of the method of moving planes enhanced by Kelvin and Emden–Fowler type transformations, as well as degree theoretic shooting methods.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and non-existence results for cooperative elliptic systems without variational structure\",\"authors\":\"John Villavert\",\"doi\":\"10.1007/s00030-023-00896-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider general cooperative elliptic systems possibly without variational structure and with differential operator resembling that from an Euler–Lagrange equation for a sharp Hardy–Sobolev inequality. Under suitable growth conditions on the source nonlinearities and geometric assumptions on the domain, we derive various existence and non-existence results and Liouville theorems. The results are obtained by incorporating and adapting various techniques, including variants of the method of moving planes enhanced by Kelvin and Emden–Fowler type transformations, as well as degree theoretic shooting methods.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00896-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00896-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的一般合作椭圆系统可能没有变分结构,其微分算子类似于尖锐 Hardy-Sobolev 不等式的欧拉-拉格朗日方程。在适当的源非线性增长条件和域几何假设下,我们推导出各种存在和不存在结果以及Liouville定理。这些结果是通过结合和调整各种技术得出的,包括通过开尔文和埃姆登-福勒类型变换增强的移动平面方法的变体,以及度论射影方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and non-existence results for cooperative elliptic systems without variational structure

We consider general cooperative elliptic systems possibly without variational structure and with differential operator resembling that from an Euler–Lagrange equation for a sharp Hardy–Sobolev inequality. Under suitable growth conditions on the source nonlinearities and geometric assumptions on the domain, we derive various existence and non-existence results and Liouville theorems. The results are obtained by incorporating and adapting various techniques, including variants of the method of moving planes enhanced by Kelvin and Emden–Fowler type transformations, as well as degree theoretic shooting methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信