分数阶渐近平坦静止时空中的广义普赖斯定律

IF 0.6 3区 数学 Q3 MATHEMATICS
Katrina Morgan, Jared Wunsch
{"title":"分数阶渐近平坦静止时空中的广义普赖斯定律","authors":"Katrina Morgan, Jared Wunsch","doi":"10.4310/mrl.2023.v30.n3.a10","DOIUrl":null,"url":null,"abstract":"We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O ({\\lvert x \\rvert}^{-\\kappa}), \\kappa \\in (1,\\infty) \\backslash \\mathbb{N}$. Given suitably smooth and decaying initial data, we show a wave locally enjoys the decay rate $O(t^{-\\kappa-2+\\epsilon})$.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"92 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes\",\"authors\":\"Katrina Morgan, Jared Wunsch\",\"doi\":\"10.4310/mrl.2023.v30.n3.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O ({\\\\lvert x \\\\rvert}^{-\\\\kappa}), \\\\kappa \\\\in (1,\\\\infty) \\\\backslash \\\\mathbb{N}$. Given suitably smooth and decaying initial data, we show a wave locally enjoys the decay rate $O(t^{-\\\\kappa-2+\\\\epsilon})$.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n3.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n3.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了关于静止时空中波方程解的衰减率的估计,该方程以 $O ({\lvert x \rvert}^{-\kappa}), \kappa \in (1,\infty) \backslash \mathbb{N}$的速率趋向于闵科夫斯基空间。给定合适的平滑和衰变的初始数据,我们展示了一个波局部享有衰变率 $O(t^{-\kappa-2+\epsilon})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes
We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O ({\lvert x \rvert}^{-\kappa}), \kappa \in (1,\infty) \backslash \mathbb{N}$. Given suitably smooth and decaying initial data, we show a wave locally enjoys the decay rate $O(t^{-\kappa-2+\epsilon})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信