{"title":"环空间上的等价剪","authors":"Sergey Arkhipov, Sebastian Ørsted","doi":"10.4310/mrl.2023.v30.n3.a2","DOIUrl":null,"url":null,"abstract":"Let $X$ be an affine, smooth, and Noetherian scheme over $\\mathbb{C}$ acted on by an affine algebraic group $G$. Applying the technique developed in $\\href{https://doi.org/10.48550/arXiv.1807.03266}{[3, }\\href{ https://doi.org/10.48550/arXiv.1812.03583}{4]}$, we define a dg‑model for the derived category of dg‑modules over the dg‑algebra of differential forms $\\Omega_X$ on $X$ equivariant with respect to the action of a derived group scheme $(G, \\Omega_G)$. We compare the obtained dg‑category with the one considered in $\\href{https://doi.org/10.48550/arXiv.1510.07472}{[2]}$ given by coherent sheaves on the derived Hamiltonian reduction of $T^\\ast X$.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant sheaves on loop spaces\",\"authors\":\"Sergey Arkhipov, Sebastian Ørsted\",\"doi\":\"10.4310/mrl.2023.v30.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $X$ be an affine, smooth, and Noetherian scheme over $\\\\mathbb{C}$ acted on by an affine algebraic group $G$. Applying the technique developed in $\\\\href{https://doi.org/10.48550/arXiv.1807.03266}{[3, }\\\\href{ https://doi.org/10.48550/arXiv.1812.03583}{4]}$, we define a dg‑model for the derived category of dg‑modules over the dg‑algebra of differential forms $\\\\Omega_X$ on $X$ equivariant with respect to the action of a derived group scheme $(G, \\\\Omega_G)$. We compare the obtained dg‑category with the one considered in $\\\\href{https://doi.org/10.48550/arXiv.1510.07472}{[2]}$ given by coherent sheaves on the derived Hamiltonian reduction of $T^\\\\ast X$.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n3.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $X$ be an affine, smooth, and Noetherian scheme over $\mathbb{C}$ acted on by an affine algebraic group $G$. Applying the technique developed in $\href{https://doi.org/10.48550/arXiv.1807.03266}{[3, }\href{ https://doi.org/10.48550/arXiv.1812.03583}{4]}$, we define a dg‑model for the derived category of dg‑modules over the dg‑algebra of differential forms $\Omega_X$ on $X$ equivariant with respect to the action of a derived group scheme $(G, \Omega_G)$. We compare the obtained dg‑category with the one considered in $\href{https://doi.org/10.48550/arXiv.1510.07472}{[2]}$ given by coherent sheaves on the derived Hamiltonian reduction of $T^\ast X$.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.