快速混合系统中最终总是命中点的零一定律

IF 0.6 3区 数学 Q3 MATHEMATICS
Dmitry Kleinbock, Ioannis Konstantoulas, Florian K. Richter
{"title":"快速混合系统中最终总是命中点的零一定律","authors":"Dmitry Kleinbock, Ioannis Konstantoulas, Florian K. Richter","doi":"10.4310/mrl.2023.v30.n3.a7","DOIUrl":null,"url":null,"abstract":"In this work we study the set of eventually always hitting points in shrinking target systems. These are points whose long orbit segments eventually hit the corresponding shrinking targets for all future times. We focus our attention on systems where translates of targets exhibit near perfect mutual independence, such as Bernoulli schemes and the Gauß map. For such systems, we present tight conditions on the shrinking rate of the targets so that the set of eventually always hitting points is a null set (or co‑null set respectively).","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero–one laws for eventually always hitting points in rapidly mixing systems\",\"authors\":\"Dmitry Kleinbock, Ioannis Konstantoulas, Florian K. Richter\",\"doi\":\"10.4310/mrl.2023.v30.n3.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study the set of eventually always hitting points in shrinking target systems. These are points whose long orbit segments eventually hit the corresponding shrinking targets for all future times. We focus our attention on systems where translates of targets exhibit near perfect mutual independence, such as Bernoulli schemes and the Gauß map. For such systems, we present tight conditions on the shrinking rate of the targets so that the set of eventually always hitting points is a null set (or co‑null set respectively).\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n3.a7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n3.a7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了收缩目标系统中最终总是命中的点的集合。这些点的长轨道段最终会在未来的所有时间内击中相应的收缩目标。我们将注意力集中在目标的平移表现出近乎完美的相互独立性的系统上,如伯努利方案和高斯图。对于这类系统,我们提出了目标收缩率的严格条件,这样最终总是命中的点的集合就是一个空集(或分别为共空集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero–one laws for eventually always hitting points in rapidly mixing systems
In this work we study the set of eventually always hitting points in shrinking target systems. These are points whose long orbit segments eventually hit the corresponding shrinking targets for all future times. We focus our attention on systems where translates of targets exhibit near perfect mutual independence, such as Bernoulli schemes and the Gauß map. For such systems, we present tight conditions on the shrinking rate of the targets so that the set of eventually always hitting points is a null set (or co‑null set respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信