基于信息的网络大人口博弈的加权年龄调度

Shubham Aggarwal;Muhammad Aneeq uz Zaman;Melih Bastopcu;Tamer Başar
{"title":"基于信息的网络大人口博弈的加权年龄调度","authors":"Shubham Aggarwal;Muhammad Aneeq uz Zaman;Melih Bastopcu;Tamer Başar","doi":"10.1109/JSAIT.2023.3334692","DOIUrl":null,"url":null,"abstract":"In this paper, we study a multi-agent game between \n<inline-formula> <tex-math>$N$ </tex-math></inline-formula>\n agents, which solve a consensus problem, and receive state information through a wireless network, that is controlled by a Base station (BS). Due to a hard-bandwidth constraint, the BS can concurrently connect at most \n<inline-formula> <tex-math>$R_{d} &lt; N$ </tex-math></inline-formula>\n agents over the network. This causes an intermittency in the agents’ state information, necessitating state estimation based on each agent’s information history. Under standard assumptions on the information structure, we separate each agent’s estimation and control problems. The BS aims to find the optimum scheduling policy that minimizes a weighted age of information based performance metric, subject to the hard-bandwidth constraint. We first relax the hard constraint to a soft update-rate constraint and compute an optimal policy for the relaxed problem by reformulating it into an MDP. This then inspires a sub-optimal policy for the bandwidth constrained problem, which is shown to approach the optimal policy as \n<inline-formula> <tex-math>$N \\rightarrow \\infty $ </tex-math></inline-formula>\n. Next, we solve the consensus problem using the mean-field game framework. By explicitly constructing the mean-field system, we prove the existence of a unique mean-field equilibrium. Consequently, we show that the equilibrium policies obtained constitute an \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n–Nash equilibrium for the finite-agent system.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"682-697"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Age of Information-Based Scheduling for Large Population Games on Networks\",\"authors\":\"Shubham Aggarwal;Muhammad Aneeq uz Zaman;Melih Bastopcu;Tamer Başar\",\"doi\":\"10.1109/JSAIT.2023.3334692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a multi-agent game between \\n<inline-formula> <tex-math>$N$ </tex-math></inline-formula>\\n agents, which solve a consensus problem, and receive state information through a wireless network, that is controlled by a Base station (BS). Due to a hard-bandwidth constraint, the BS can concurrently connect at most \\n<inline-formula> <tex-math>$R_{d} &lt; N$ </tex-math></inline-formula>\\n agents over the network. This causes an intermittency in the agents’ state information, necessitating state estimation based on each agent’s information history. Under standard assumptions on the information structure, we separate each agent’s estimation and control problems. The BS aims to find the optimum scheduling policy that minimizes a weighted age of information based performance metric, subject to the hard-bandwidth constraint. We first relax the hard constraint to a soft update-rate constraint and compute an optimal policy for the relaxed problem by reformulating it into an MDP. This then inspires a sub-optimal policy for the bandwidth constrained problem, which is shown to approach the optimal policy as \\n<inline-formula> <tex-math>$N \\\\rightarrow \\\\infty $ </tex-math></inline-formula>\\n. Next, we solve the consensus problem using the mean-field game framework. By explicitly constructing the mean-field system, we prove the existence of a unique mean-field equilibrium. Consequently, we show that the equilibrium policies obtained constitute an \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n–Nash equilibrium for the finite-agent system.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"682-697\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323107/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10323107/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了$N$智能体之间的多智能体博弈,该博弈解决了一个共识问题,并通过由基站(BS)控制的无线网络接收状态信息。由于硬带宽的限制,BS通过网络最多可以同时连接$R_{d} < N$个代理。这会导致代理的状态信息出现间歇性,需要基于每个代理的信息历史进行状态估计。在信息结构的标准假设下,我们分离了每个agent的估计和控制问题。BS的目标是在受硬带宽约束的情况下,找到最小化基于信息的性能指标加权年龄的最优调度策略。我们首先将硬约束放宽为软更新率约束,并通过将其重新表述为MDP来计算放宽后问题的最优策略。这就激发了带宽受限问题的次优策略,该策略接近于最优策略$N \rightarrow \infty $。其次,我们使用平均场博弈框架来解决共识问题。通过显式构造平均场系统,证明了唯一平均场平衡的存在性。因此,我们证明了所得到的均衡策略构成有限智能体系统的$\epsilon $ -纳什均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Age of Information-Based Scheduling for Large Population Games on Networks
In this paper, we study a multi-agent game between $N$ agents, which solve a consensus problem, and receive state information through a wireless network, that is controlled by a Base station (BS). Due to a hard-bandwidth constraint, the BS can concurrently connect at most $R_{d} < N$ agents over the network. This causes an intermittency in the agents’ state information, necessitating state estimation based on each agent’s information history. Under standard assumptions on the information structure, we separate each agent’s estimation and control problems. The BS aims to find the optimum scheduling policy that minimizes a weighted age of information based performance metric, subject to the hard-bandwidth constraint. We first relax the hard constraint to a soft update-rate constraint and compute an optimal policy for the relaxed problem by reformulating it into an MDP. This then inspires a sub-optimal policy for the bandwidth constrained problem, which is shown to approach the optimal policy as $N \rightarrow \infty $ . Next, we solve the consensus problem using the mean-field game framework. By explicitly constructing the mean-field system, we prove the existence of a unique mean-field equilibrium. Consequently, we show that the equilibrium policies obtained constitute an $\epsilon $ –Nash equilibrium for the finite-agent system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信