有理立方贝塞尔形式的圆锥曲线变得简单了

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Javier Sánchez-Reyes
{"title":"有理立方贝塞尔形式的圆锥曲线变得简单了","authors":"Javier Sánchez-Reyes","doi":"10.1016/j.cagd.2023.102266","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the rational cubic Bézier representation of conics, simplifying and expanding previous works, elucidating their connection, and making them more accessible. The key ingredient is the concept of conic associated with a given (planar) cubic Bézier polygon, resulting from an intuitive geometric construction: Take a cubic semicircle, whose control polygon forms a square, and apply the perspective that maps this square to the given polygon. Since cubic conics come from a quadratic version by inserting a base point, this conic admitting the polygon turns out to be unique. Therefore, detecting whether a cubic is a conic boils down to checking out whether it coincides with the conic associated with its control polygon. These two curves coincide if they have the same shape factors (aka, shape invariants) or, equivalently, the same oriented curvatures at the endpoints. Our results hold for any cubic polygon (with no three points collinear), irrespective of its convexity. However, only polygons forming a strictly convex quadrilateral define conics whose cubic form admits positive weights. Also, we provide a geometric interpretation for the added expressive power (over quadratics) that such cubics with positive weights offer. In addition to semiellipses, they encompass elliptical segments with rho-values over the negative unit interval.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"108 ","pages":"Article 102266"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839623000985/pdfft?md5=c9318c50b5c8b9e909de36ce8c83727a&pid=1-s2.0-S0167839623000985-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Conics in rational cubic Bézier form made simple\",\"authors\":\"Javier Sánchez-Reyes\",\"doi\":\"10.1016/j.cagd.2023.102266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the rational cubic Bézier representation of conics, simplifying and expanding previous works, elucidating their connection, and making them more accessible. The key ingredient is the concept of conic associated with a given (planar) cubic Bézier polygon, resulting from an intuitive geometric construction: Take a cubic semicircle, whose control polygon forms a square, and apply the perspective that maps this square to the given polygon. Since cubic conics come from a quadratic version by inserting a base point, this conic admitting the polygon turns out to be unique. Therefore, detecting whether a cubic is a conic boils down to checking out whether it coincides with the conic associated with its control polygon. These two curves coincide if they have the same shape factors (aka, shape invariants) or, equivalently, the same oriented curvatures at the endpoints. Our results hold for any cubic polygon (with no three points collinear), irrespective of its convexity. However, only polygons forming a strictly convex quadrilateral define conics whose cubic form admits positive weights. Also, we provide a geometric interpretation for the added expressive power (over quadratics) that such cubics with positive weights offer. In addition to semiellipses, they encompass elliptical segments with rho-values over the negative unit interval.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"108 \",\"pages\":\"Article 102266\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167839623000985/pdfft?md5=c9318c50b5c8b9e909de36ce8c83727a&pid=1-s2.0-S0167839623000985-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839623000985\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839623000985","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们重新审视了有理立方bsamizier表示的二次曲线,简化和扩展了以前的工作,阐明了它们之间的联系,并使它们更容易理解。关键成分是与给定的(平面)立方bsamzier多边形相关的圆锥概念,这源于直观的几何结构:取一个立方半圆,其控制多边形形成一个正方形,并应用将该正方形映射到给定多边形的透视图。由于三次二次曲线是通过插入一个基点而得到的二次曲线,因此这个承认多边形的二次曲线是唯一的。因此,检测一个三次体是否为二次曲线归结为检查它是否与与其控制多边形相关联的二次曲线重合。如果这两条曲线具有相同的形状因子(即形状不变量),或者在端点处具有相同的方向曲率,则这两条曲线重合。我们的结果适用于任何三次多边形(没有三个点共线),不管它的凸性如何。然而,只有形成严格凸四边形的多边形才能定义三次形式允许正权的圆锥。此外,我们还提供了一种几何解释,以解释这种具有正权重的立方体所提供的额外表达能力(超过二次)。除了半椭圆外,它们还包含在负单位区间上具有rho值的椭圆段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conics in rational cubic Bézier form made simple

Conics in rational cubic Bézier form made simple

We revisit the rational cubic Bézier representation of conics, simplifying and expanding previous works, elucidating their connection, and making them more accessible. The key ingredient is the concept of conic associated with a given (planar) cubic Bézier polygon, resulting from an intuitive geometric construction: Take a cubic semicircle, whose control polygon forms a square, and apply the perspective that maps this square to the given polygon. Since cubic conics come from a quadratic version by inserting a base point, this conic admitting the polygon turns out to be unique. Therefore, detecting whether a cubic is a conic boils down to checking out whether it coincides with the conic associated with its control polygon. These two curves coincide if they have the same shape factors (aka, shape invariants) or, equivalently, the same oriented curvatures at the endpoints. Our results hold for any cubic polygon (with no three points collinear), irrespective of its convexity. However, only polygons forming a strictly convex quadrilateral define conics whose cubic form admits positive weights. Also, we provide a geometric interpretation for the added expressive power (over quadratics) that such cubics with positive weights offer. In addition to semiellipses, they encompass elliptical segments with rho-values over the negative unit interval.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信