考奇 DMP:利用考奇核和奇异值分解提高 3C 工业装配质量

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meng Liu, Wenbo Zhu, Lufeng Luo, Qinghua Lu, Weichang Yeh, Yunzhi Zhang
{"title":"考奇 DMP:利用考奇核和奇异值分解提高 3C 工业装配质量","authors":"Meng Liu,&nbsp;Wenbo Zhu,&nbsp;Lufeng Luo,&nbsp;Qinghua Lu,&nbsp;Weichang Yeh,&nbsp;Yunzhi Zhang","doi":"10.1049/ccs2.12097","DOIUrl":null,"url":null,"abstract":"<p>Although <b>D</b>ynamic <b>M</b>ovement <b>P</b>rimitives (DMP) is an effective tool for robotic arm trajectory generalisation, the application of DMP in the 3C (Computer, Communication, Consumer Electronics) industry still faces challenges such as low precision and high-time consumption. To address this problem, we propose a novel Cauchy DMP framework. The main improvements and advantages of Cauchy DMP, compared to the original DMP, are (1) since the Cauchy distribution has a simpler model and wider shape, using the Cauchy distribution instead of the Gaussian distribution in the original DMP reduces the complexity of the algorithm and saves time. (2) <b>S</b>ingular <b>V</b>alue <b>D</b>ecomposition (SVD) can effectively model the error. To reduce the interference of the rounding and human error on the trajectory, SVD can be used to obtain the weight of each basis function. The proposed Cauchy DMP framework combines the above two points and is validated on a real UR5 robotic arm. The results show that Cauchy DMP retains the learnability of the original DMP and has the advantages of short time consumption and low error rate.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 4","pages":"288-299"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12097","citationCount":"0","resultStr":"{\"title\":\"Cauchy DMP: Improving 3C industrial assembly quality with the Cauchy kernel and singular value decomposition\",\"authors\":\"Meng Liu,&nbsp;Wenbo Zhu,&nbsp;Lufeng Luo,&nbsp;Qinghua Lu,&nbsp;Weichang Yeh,&nbsp;Yunzhi Zhang\",\"doi\":\"10.1049/ccs2.12097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although <b>D</b>ynamic <b>M</b>ovement <b>P</b>rimitives (DMP) is an effective tool for robotic arm trajectory generalisation, the application of DMP in the 3C (Computer, Communication, Consumer Electronics) industry still faces challenges such as low precision and high-time consumption. To address this problem, we propose a novel Cauchy DMP framework. The main improvements and advantages of Cauchy DMP, compared to the original DMP, are (1) since the Cauchy distribution has a simpler model and wider shape, using the Cauchy distribution instead of the Gaussian distribution in the original DMP reduces the complexity of the algorithm and saves time. (2) <b>S</b>ingular <b>V</b>alue <b>D</b>ecomposition (SVD) can effectively model the error. To reduce the interference of the rounding and human error on the trajectory, SVD can be used to obtain the weight of each basis function. The proposed Cauchy DMP framework combines the above two points and is validated on a real UR5 robotic arm. The results show that Cauchy DMP retains the learnability of the original DMP and has the advantages of short time consumption and low error rate.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"5 4\",\"pages\":\"288-299\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12097\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

尽管动态运动原语(DMP)是机械臂轨迹泛化的有效工具,但DMP在3C(计算机、通信、消费电子)行业中的应用仍然面临精度低、耗时高等挑战。为了解决这个问题,我们提出了一个新的柯西DMP框架。与原始DMP相比,柯西DMP的主要改进和优点是:(1)由于柯西分布模型更简单,形状更宽,在原始DMP中使用柯西分布代替高斯分布,降低了算法的复杂性,节省了时间。(2)奇异值分解(SVD)可以有效地对误差进行建模。为了减少舍入和人为误差对轨迹的干扰,可以使用奇异值分解来获得每个基函数的权值。提出的Cauchy DMP框架结合了上述两点,并在真实的UR5机械臂上进行了验证。结果表明,柯西DMP保留了原始DMP的可学习性,并且具有耗时短、错误率低的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cauchy DMP: Improving 3C industrial assembly quality with the Cauchy kernel and singular value decomposition

Cauchy DMP: Improving 3C industrial assembly quality with the Cauchy kernel and singular value decomposition

Although Dynamic Movement Primitives (DMP) is an effective tool for robotic arm trajectory generalisation, the application of DMP in the 3C (Computer, Communication, Consumer Electronics) industry still faces challenges such as low precision and high-time consumption. To address this problem, we propose a novel Cauchy DMP framework. The main improvements and advantages of Cauchy DMP, compared to the original DMP, are (1) since the Cauchy distribution has a simpler model and wider shape, using the Cauchy distribution instead of the Gaussian distribution in the original DMP reduces the complexity of the algorithm and saves time. (2) Singular Value Decomposition (SVD) can effectively model the error. To reduce the interference of the rounding and human error on the trajectory, SVD can be used to obtain the weight of each basis function. The proposed Cauchy DMP framework combines the above two points and is validated on a real UR5 robotic arm. The results show that Cauchy DMP retains the learnability of the original DMP and has the advantages of short time consumption and low error rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信