Shengting Cao;Mansoo Ko;Chih-Ying Li;David Brown;Xuefeng Wang;Fei Hu;Yu Gan
{"title":"单带与分带:通过微相步态捕捉实现智能跑步机控制,促进中风后康复","authors":"Shengting Cao;Mansoo Ko;Chih-Ying Li;David Brown;Xuefeng Wang;Fei Hu;Yu Gan","doi":"10.1109/THMS.2023.3327661","DOIUrl":null,"url":null,"abstract":"Stroke is the leading long-term disability and causes a significant financial burden associated with rehabilitation. In poststroke rehabilitation, individuals with hemiparesis have a specialized demand for coordinated movement between the paretic and the nonparetic legs. The split-belt treadmill can effectively facilitate the paretic leg by slowing down the belt speed for that leg while the patient is walking on a split-belt treadmill. Although studies have found that split-belt treadmills can produce better gait recovery outcomes than traditional single-belt treadmills, the high cost of split-belt treadmills is a significant barrier to stroke rehabilitation in clinics. In this article, we design an AI-based system for the single-belt treadmill to make it act like a split-belt by adjusting the belt speed instantaneously according to the patient's microgait phases. This system only requires a low-cost RGB camera to capture human gait patterns. A novel microgait classification pipeline model is used to detect gait phases in real time. The pipeline is based on self-supervised learning that can calibrate the anchor video with the real-time video. We then use a ResNet-LSTM module to handle temporal information and increase accuracy. A real-time filtering algorithm is used to smoothen the treadmill control. We have tested the developed system with 34 healthy individuals and four stroke patients. The results show that our system is able to detect the gait microphase accurately and requires less human annotation in training, compared to the ResNet50 classifier. Our system “Splicer” is boosted by AI modules and performs comparably as a split-belt system, in terms of timely varying left/right foot speed, creating a hemiparetic gait in healthy individuals, and promoting paretic side symmetry in force exertion for stroke patients. This innovative design can potentially provide cost-effective rehabilitation treatment for hemiparetic patients.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Belt Versus Split-Belt: Intelligent Treadmill Control via Microphase Gait Capture for Poststroke Rehabilitation\",\"authors\":\"Shengting Cao;Mansoo Ko;Chih-Ying Li;David Brown;Xuefeng Wang;Fei Hu;Yu Gan\",\"doi\":\"10.1109/THMS.2023.3327661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke is the leading long-term disability and causes a significant financial burden associated with rehabilitation. In poststroke rehabilitation, individuals with hemiparesis have a specialized demand for coordinated movement between the paretic and the nonparetic legs. The split-belt treadmill can effectively facilitate the paretic leg by slowing down the belt speed for that leg while the patient is walking on a split-belt treadmill. Although studies have found that split-belt treadmills can produce better gait recovery outcomes than traditional single-belt treadmills, the high cost of split-belt treadmills is a significant barrier to stroke rehabilitation in clinics. In this article, we design an AI-based system for the single-belt treadmill to make it act like a split-belt by adjusting the belt speed instantaneously according to the patient's microgait phases. This system only requires a low-cost RGB camera to capture human gait patterns. A novel microgait classification pipeline model is used to detect gait phases in real time. The pipeline is based on self-supervised learning that can calibrate the anchor video with the real-time video. We then use a ResNet-LSTM module to handle temporal information and increase accuracy. A real-time filtering algorithm is used to smoothen the treadmill control. We have tested the developed system with 34 healthy individuals and four stroke patients. The results show that our system is able to detect the gait microphase accurately and requires less human annotation in training, compared to the ResNet50 classifier. Our system “Splicer” is boosted by AI modules and performs comparably as a split-belt system, in terms of timely varying left/right foot speed, creating a hemiparetic gait in healthy individuals, and promoting paretic side symmetry in force exertion for stroke patients. This innovative design can potentially provide cost-effective rehabilitation treatment for hemiparetic patients.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10324394/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10324394/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Single-Belt Versus Split-Belt: Intelligent Treadmill Control via Microphase Gait Capture for Poststroke Rehabilitation
Stroke is the leading long-term disability and causes a significant financial burden associated with rehabilitation. In poststroke rehabilitation, individuals with hemiparesis have a specialized demand for coordinated movement between the paretic and the nonparetic legs. The split-belt treadmill can effectively facilitate the paretic leg by slowing down the belt speed for that leg while the patient is walking on a split-belt treadmill. Although studies have found that split-belt treadmills can produce better gait recovery outcomes than traditional single-belt treadmills, the high cost of split-belt treadmills is a significant barrier to stroke rehabilitation in clinics. In this article, we design an AI-based system for the single-belt treadmill to make it act like a split-belt by adjusting the belt speed instantaneously according to the patient's microgait phases. This system only requires a low-cost RGB camera to capture human gait patterns. A novel microgait classification pipeline model is used to detect gait phases in real time. The pipeline is based on self-supervised learning that can calibrate the anchor video with the real-time video. We then use a ResNet-LSTM module to handle temporal information and increase accuracy. A real-time filtering algorithm is used to smoothen the treadmill control. We have tested the developed system with 34 healthy individuals and four stroke patients. The results show that our system is able to detect the gait microphase accurately and requires less human annotation in training, compared to the ResNet50 classifier. Our system “Splicer” is boosted by AI modules and performs comparably as a split-belt system, in terms of timely varying left/right foot speed, creating a hemiparetic gait in healthy individuals, and promoting paretic side symmetry in force exertion for stroke patients. This innovative design can potentially provide cost-effective rehabilitation treatment for hemiparetic patients.
期刊介绍:
The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.