{"title":"网络物理异常检测的两级融合框架","authors":"Simone Guarino;Francesco Vitale;Francesco Flammini;Luca Faramondi;Nicola Mazzocca;Roberto Setola","doi":"10.1109/TICPS.2023.3336608","DOIUrl":null,"url":null,"abstract":"Industrial Cyber-Physical Systems (ICPSs) generate cyber and physical data whose joint elaboration can provide insight into ICPSs' operating conditions. Cyber-Physical Anomaly Detection (CPAD) addresses the joint analysis of cyber and physical threats through multi-source and multi-modal data analysis. CPAD is often tailored to specific anomaly types and may use opaque deep learning models, impairing flexibility and explainability. In light of these challenges, we propose a two-level fusion framework for modeling and deploying CPAD in distributed ICPSs. The first detector-level fusion involves deploying CPAD detectors to several distributed ICPS segments and training them through data/decision fusion techniques with historical cyber-physical data. When the distributed ICPS is operational, thus collecting new cyber-physical data, ICPS segments' trained CPAD detectors provide pieces of evidence that go through the second ensemble-level fusion, for which we propose an explainable decision fusion technique based on Time-Varying Dynamic Bayesian networks. The evaluation involves the comprehensive application of the framework to a real hardware-in-the-loop case-study in a laboratory environment. The proposed ensemble-level fusion outperforms the state-of-the-art decision fusion techniques while providing explainable results.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"2 ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334031","citationCount":"0","resultStr":"{\"title\":\"A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection\",\"authors\":\"Simone Guarino;Francesco Vitale;Francesco Flammini;Luca Faramondi;Nicola Mazzocca;Roberto Setola\",\"doi\":\"10.1109/TICPS.2023.3336608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial Cyber-Physical Systems (ICPSs) generate cyber and physical data whose joint elaboration can provide insight into ICPSs' operating conditions. Cyber-Physical Anomaly Detection (CPAD) addresses the joint analysis of cyber and physical threats through multi-source and multi-modal data analysis. CPAD is often tailored to specific anomaly types and may use opaque deep learning models, impairing flexibility and explainability. In light of these challenges, we propose a two-level fusion framework for modeling and deploying CPAD in distributed ICPSs. The first detector-level fusion involves deploying CPAD detectors to several distributed ICPS segments and training them through data/decision fusion techniques with historical cyber-physical data. When the distributed ICPS is operational, thus collecting new cyber-physical data, ICPS segments' trained CPAD detectors provide pieces of evidence that go through the second ensemble-level fusion, for which we propose an explainable decision fusion technique based on Time-Varying Dynamic Bayesian networks. The evaluation involves the comprehensive application of the framework to a real hardware-in-the-loop case-study in a laboratory environment. The proposed ensemble-level fusion outperforms the state-of-the-art decision fusion techniques while providing explainable results.\",\"PeriodicalId\":100640,\"journal\":{\"name\":\"IEEE Transactions on Industrial Cyber-Physical Systems\",\"volume\":\"2 \",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10334031/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10334031/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection
Industrial Cyber-Physical Systems (ICPSs) generate cyber and physical data whose joint elaboration can provide insight into ICPSs' operating conditions. Cyber-Physical Anomaly Detection (CPAD) addresses the joint analysis of cyber and physical threats through multi-source and multi-modal data analysis. CPAD is often tailored to specific anomaly types and may use opaque deep learning models, impairing flexibility and explainability. In light of these challenges, we propose a two-level fusion framework for modeling and deploying CPAD in distributed ICPSs. The first detector-level fusion involves deploying CPAD detectors to several distributed ICPS segments and training them through data/decision fusion techniques with historical cyber-physical data. When the distributed ICPS is operational, thus collecting new cyber-physical data, ICPS segments' trained CPAD detectors provide pieces of evidence that go through the second ensemble-level fusion, for which we propose an explainable decision fusion technique based on Time-Varying Dynamic Bayesian networks. The evaluation involves the comprehensive application of the framework to a real hardware-in-the-loop case-study in a laboratory environment. The proposed ensemble-level fusion outperforms the state-of-the-art decision fusion techniques while providing explainable results.