在 5 GHz 频段通过 Ro-FSO 集成,利用基于 RGB 的 WLAN 增强高速网络

Q3 Engineering
Abhishek Sharma, Vivekanand Mishra
{"title":"在 5 GHz 频段通过 Ro-FSO 集成,利用基于 RGB 的 WLAN 增强高速网络","authors":"Abhishek Sharma, Vivekanand Mishra","doi":"10.1515/joc-2023-0348","DOIUrl":null,"url":null,"abstract":"Abstract The limited bandwidth constraints imposed by conventional wireless carriers pose a significant hurdle when it comes to the delivery of high-speed broadband services. In response to this challenge, Radio over Free Space Optics (Ro-FSO) has emerged as a viable and innovative solution, seamlessly amalgamating wireless and optical systems. This integration proves particularly invaluable in sensitive environments, such as hospitals, where the risk of electromagnetic interference disrupting critical medical equipment is a real concern. Ro-FSO offers a disruption-free avenue for high-speed data transmission, positioning it as the ideal choice for broadband services, including Wireless Local Area Networks (WLANs). Within the scope of this study, we introduce a high-speed Ro-FSO link, showcasing the capability to concurrently transmit three independent channels with Red, Green and Blue (RGB) laser respectively, each supporting a robust 1 Gbps data rate. These data streams are skilfully up-converted to the 5 GHz RF bands, encompassing transmission distances of 650 m across the FSO channel. Our numerical simulation findings underscore the successful transmission of all the channels using wavelength division multiplexing (WDM), seamlessly meeting the prescribed Bit Error Rate (BER) and eye pattern criteria, solidifying the Ro-FSO’s standing as a promising solution for high-speed broadband delivery.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing high-speed networks using RGB-based WLAN through Ro-FSO integration in the 5 GHz band\",\"authors\":\"Abhishek Sharma, Vivekanand Mishra\",\"doi\":\"10.1515/joc-2023-0348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The limited bandwidth constraints imposed by conventional wireless carriers pose a significant hurdle when it comes to the delivery of high-speed broadband services. In response to this challenge, Radio over Free Space Optics (Ro-FSO) has emerged as a viable and innovative solution, seamlessly amalgamating wireless and optical systems. This integration proves particularly invaluable in sensitive environments, such as hospitals, where the risk of electromagnetic interference disrupting critical medical equipment is a real concern. Ro-FSO offers a disruption-free avenue for high-speed data transmission, positioning it as the ideal choice for broadband services, including Wireless Local Area Networks (WLANs). Within the scope of this study, we introduce a high-speed Ro-FSO link, showcasing the capability to concurrently transmit three independent channels with Red, Green and Blue (RGB) laser respectively, each supporting a robust 1 Gbps data rate. These data streams are skilfully up-converted to the 5 GHz RF bands, encompassing transmission distances of 650 m across the FSO channel. Our numerical simulation findings underscore the successful transmission of all the channels using wavelength division multiplexing (WDM), seamlessly meeting the prescribed Bit Error Rate (BER) and eye pattern criteria, solidifying the Ro-FSO’s standing as a promising solution for high-speed broadband delivery.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

传统无线运营商对带宽的限制对高速宽带业务的提供造成了很大的障碍。为了应对这一挑战,自由空间光学无线电(Ro-FSO)已经成为一种可行的创新解决方案,无缝融合了无线和光学系统。在医院等敏感环境中,这种集成被证明是非常宝贵的,在这些环境中,电磁干扰干扰关键医疗设备的风险是一个真正令人担忧的问题。Ro-FSO为高速数据传输提供了一种无干扰的途径,使其成为宽带业务(包括无线局域网(wlan))的理想选择。在本研究的范围内,我们引入了高速Ro-FSO链路,展示了同时传输三个独立通道的能力,分别使用红、绿、蓝(RGB)激光,每个通道支持1 Gbps的稳健数据速率。这些数据流被巧妙地上转换为5 GHz射频频段,包括跨越FSO信道的650 m的传输距离。我们的数值模拟结果强调了使用波分复用(WDM)的所有信道的成功传输,无缝地满足规定的误码率(BER)和眼图标准,巩固了Ro-FSO作为高速宽带传输的有前途的解决方案的地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing high-speed networks using RGB-based WLAN through Ro-FSO integration in the 5 GHz band
Abstract The limited bandwidth constraints imposed by conventional wireless carriers pose a significant hurdle when it comes to the delivery of high-speed broadband services. In response to this challenge, Radio over Free Space Optics (Ro-FSO) has emerged as a viable and innovative solution, seamlessly amalgamating wireless and optical systems. This integration proves particularly invaluable in sensitive environments, such as hospitals, where the risk of electromagnetic interference disrupting critical medical equipment is a real concern. Ro-FSO offers a disruption-free avenue for high-speed data transmission, positioning it as the ideal choice for broadband services, including Wireless Local Area Networks (WLANs). Within the scope of this study, we introduce a high-speed Ro-FSO link, showcasing the capability to concurrently transmit three independent channels with Red, Green and Blue (RGB) laser respectively, each supporting a robust 1 Gbps data rate. These data streams are skilfully up-converted to the 5 GHz RF bands, encompassing transmission distances of 650 m across the FSO channel. Our numerical simulation findings underscore the successful transmission of all the channels using wavelength division multiplexing (WDM), seamlessly meeting the prescribed Bit Error Rate (BER) and eye pattern criteria, solidifying the Ro-FSO’s standing as a promising solution for high-speed broadband delivery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optical Communications
Journal of Optical Communications Engineering-Electrical and Electronic Engineering
CiteScore
2.90
自引率
0.00%
发文量
86
期刊介绍: This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信