{"title":"托马斯-费米-冯-魏茨萨克理论中的二维材料均质化","authors":"Saad Benjelloun, Salma Lahbabi, Abdelqoddous Moussa","doi":"arxiv-2312.08067","DOIUrl":null,"url":null,"abstract":"We study the homogenization of the Thomas-Fermi-von Weizsacker (TFW) model\nfor 2D materials. It consists in considering 2D-periodic nuclear densities with\nperiods going to zero. We study the behavior of the corresponding ground state\nelectronic densities and ground state energies. The main result is that these\nthree dimensional problems converge to a limit model that is one dimensional.\nWe also illustrate this convergence with numerical simulations and estimate the\nconverging rate for the ground state electronic densities and the ground state\nenergies.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of 2D materials in the Thomas-Fermi-von Weizsacker theory\",\"authors\":\"Saad Benjelloun, Salma Lahbabi, Abdelqoddous Moussa\",\"doi\":\"arxiv-2312.08067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the homogenization of the Thomas-Fermi-von Weizsacker (TFW) model\\nfor 2D materials. It consists in considering 2D-periodic nuclear densities with\\nperiods going to zero. We study the behavior of the corresponding ground state\\nelectronic densities and ground state energies. The main result is that these\\nthree dimensional problems converge to a limit model that is one dimensional.\\nWe also illustrate this convergence with numerical simulations and estimate the\\nconverging rate for the ground state electronic densities and the ground state\\nenergies.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.08067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homogenization of 2D materials in the Thomas-Fermi-von Weizsacker theory
We study the homogenization of the Thomas-Fermi-von Weizsacker (TFW) model
for 2D materials. It consists in considering 2D-periodic nuclear densities with
periods going to zero. We study the behavior of the corresponding ground state
electronic densities and ground state energies. The main result is that these
three dimensional problems converge to a limit model that is one dimensional.
We also illustrate this convergence with numerical simulations and estimate the
converging rate for the ground state electronic densities and the ground state
energies.