E. V. Mishchenko, A. M. Gileva, E. A. Markvicheva, M. Yu. Koroleva
{"title":"包裹多柔比星和胸腺醌的纳米乳液和固体脂质纳米颗粒","authors":"E. V. Mishchenko, A. M. Gileva, E. A. Markvicheva, M. Yu. Koroleva","doi":"10.1134/S1061933X23600707","DOIUrl":null,"url":null,"abstract":"<p>Nanoemulsions (NEs) and solid lipid nanoparticles (SLNs) are promising drug delivery systems. In this work, paraffin oil NEs and stearic acid SLNs stabilized with Tween 60 and Span 60 have been studied. NEs with an average droplet diameter of ~50 nm and suspensions of SLNs with an average size of ~30 nm are stable to aggregation for more than 90 days. The rates of penetration of lipid particles into cancer cells (C6 and MCF-7) depend on their sizes. After incubation for 1 h, lipid nanoparticles ~50 nm in size penetrate into cells, are distributed in their internal space, and concentrate in the nuclei. The cytotoxicity of doxorubicin- or thymoquinone-loaded NEs and SLNs against MCF-7 and HTC 116 cell lines is higher than the cytotoxicity of the individual substances. Wherein, unloaded NEs and SLNs show low cytotoxicity. The obtained results demonstrate that paraffin oil NEs and stearic acid SLNs are promising to be used as carriers of both lipophilic and amphiphilic drugs, including doxorubicin and thymoquinone. The accumulation of lipid nanoparticles with sizes smaller than 100 nm in cell nuclei is an advantage of such systems for the delivery of anticancer drugs, because this leads to DNA replication suppression followed by cell apoptosis.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoemulsions and Solid Lipid Nanoparticles with Encapsulated Doxorubicin and Thymoquinone\",\"authors\":\"E. V. Mishchenko, A. M. Gileva, E. A. Markvicheva, M. Yu. Koroleva\",\"doi\":\"10.1134/S1061933X23600707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoemulsions (NEs) and solid lipid nanoparticles (SLNs) are promising drug delivery systems. In this work, paraffin oil NEs and stearic acid SLNs stabilized with Tween 60 and Span 60 have been studied. NEs with an average droplet diameter of ~50 nm and suspensions of SLNs with an average size of ~30 nm are stable to aggregation for more than 90 days. The rates of penetration of lipid particles into cancer cells (C6 and MCF-7) depend on their sizes. After incubation for 1 h, lipid nanoparticles ~50 nm in size penetrate into cells, are distributed in their internal space, and concentrate in the nuclei. The cytotoxicity of doxorubicin- or thymoquinone-loaded NEs and SLNs against MCF-7 and HTC 116 cell lines is higher than the cytotoxicity of the individual substances. Wherein, unloaded NEs and SLNs show low cytotoxicity. The obtained results demonstrate that paraffin oil NEs and stearic acid SLNs are promising to be used as carriers of both lipophilic and amphiphilic drugs, including doxorubicin and thymoquinone. The accumulation of lipid nanoparticles with sizes smaller than 100 nm in cell nuclei is an advantage of such systems for the delivery of anticancer drugs, because this leads to DNA replication suppression followed by cell apoptosis.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23600707\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600707","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nanoemulsions and Solid Lipid Nanoparticles with Encapsulated Doxorubicin and Thymoquinone
Nanoemulsions (NEs) and solid lipid nanoparticles (SLNs) are promising drug delivery systems. In this work, paraffin oil NEs and stearic acid SLNs stabilized with Tween 60 and Span 60 have been studied. NEs with an average droplet diameter of ~50 nm and suspensions of SLNs with an average size of ~30 nm are stable to aggregation for more than 90 days. The rates of penetration of lipid particles into cancer cells (C6 and MCF-7) depend on their sizes. After incubation for 1 h, lipid nanoparticles ~50 nm in size penetrate into cells, are distributed in their internal space, and concentrate in the nuclei. The cytotoxicity of doxorubicin- or thymoquinone-loaded NEs and SLNs against MCF-7 and HTC 116 cell lines is higher than the cytotoxicity of the individual substances. Wherein, unloaded NEs and SLNs show low cytotoxicity. The obtained results demonstrate that paraffin oil NEs and stearic acid SLNs are promising to be used as carriers of both lipophilic and amphiphilic drugs, including doxorubicin and thymoquinone. The accumulation of lipid nanoparticles with sizes smaller than 100 nm in cell nuclei is an advantage of such systems for the delivery of anticancer drugs, because this leads to DNA replication suppression followed by cell apoptosis.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.