浏览器端管道矢量数据拓扑检查的新型优化方法

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Weidong Li, Chunbo Shi, Yongbo Yu, Zhe Wang
{"title":"浏览器端管道矢量数据拓扑检查的新型优化方法","authors":"Weidong Li, Chunbo Shi, Yongbo Yu, Zhe Wang","doi":"10.1007/s00607-023-01241-2","DOIUrl":null,"url":null,"abstract":"<p>The topological relationship of spatial data is essential to GIS data processing and spatial analysis such as in analysis of pipe explosion in gas pipeline network. The existing browser-side JavaScript topology check library is inefficient and even crashes when checking the pipe network topology relationships for large amounts of data. In this paper, we present a topology checking and optimization method for pipeline vector data in browser-side using quadtree. Firstly, an algorithm mechanism that conforms to GIS data is designed based on JavaScript shared memory mechanism, topological check algorithm characteristics, and spatial data high-precision characteristics. Then using a fast rejection experiment and straddle test to realize the browser-side topology checking algorithm, through tolerance setting, improve the inspection efficiency and accuracy, which solves the problem that Turf and Jsts libraries cannot set tolerance. Based on the concept of quadtree spatial index, an optimization method of browser-side quadtree topology checking algorithm(BQTCA) is proposed. Without setting tolerance, the topology check of 114 point data and 1881 line data takes 487 milliseconds, and the efficiency of BQTCA is about 12 times and 39 times higher than that of the well-known public libraries Turf and Jsts, respectively. When the data volume increases to 912 point data and 15048 line data, BQTCA takes 6970 ms, which is about 65 times and 190 times more efficient than Turf and Jsts, respectively. The larger the data volume is, the more pronounced the efficiency improvement of BQTCA. Even when the data volume is so large that Turf and Jsts can- not calculate even crash, BQTCA can still complete the checking calculation. Through experiments, BQTCA can significantly improve the efficiency of browser-side vector pipeline topology relationship inspection under a large amount of data, and meet the commercial application requirements.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"82 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel optimization approach to topology checking of pipeline vector data in browser side\",\"authors\":\"Weidong Li, Chunbo Shi, Yongbo Yu, Zhe Wang\",\"doi\":\"10.1007/s00607-023-01241-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The topological relationship of spatial data is essential to GIS data processing and spatial analysis such as in analysis of pipe explosion in gas pipeline network. The existing browser-side JavaScript topology check library is inefficient and even crashes when checking the pipe network topology relationships for large amounts of data. In this paper, we present a topology checking and optimization method for pipeline vector data in browser-side using quadtree. Firstly, an algorithm mechanism that conforms to GIS data is designed based on JavaScript shared memory mechanism, topological check algorithm characteristics, and spatial data high-precision characteristics. Then using a fast rejection experiment and straddle test to realize the browser-side topology checking algorithm, through tolerance setting, improve the inspection efficiency and accuracy, which solves the problem that Turf and Jsts libraries cannot set tolerance. Based on the concept of quadtree spatial index, an optimization method of browser-side quadtree topology checking algorithm(BQTCA) is proposed. Without setting tolerance, the topology check of 114 point data and 1881 line data takes 487 milliseconds, and the efficiency of BQTCA is about 12 times and 39 times higher than that of the well-known public libraries Turf and Jsts, respectively. When the data volume increases to 912 point data and 15048 line data, BQTCA takes 6970 ms, which is about 65 times and 190 times more efficient than Turf and Jsts, respectively. The larger the data volume is, the more pronounced the efficiency improvement of BQTCA. Even when the data volume is so large that Turf and Jsts can- not calculate even crash, BQTCA can still complete the checking calculation. Through experiments, BQTCA can significantly improve the efficiency of browser-side vector pipeline topology relationship inspection under a large amount of data, and meet the commercial application requirements.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-023-01241-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-023-01241-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

空间数据的拓扑关系是GIS数据处理和空间分析的基础,如天然气管网管道爆炸分析。现有的浏览器端JavaScript拓扑检查库效率低下,在检查大量数据的管网拓扑关系时甚至会崩溃。本文提出了一种基于四叉树的浏览器端管道矢量数据拓扑检查与优化方法。首先,基于JavaScript共享内存机制、拓扑校验算法特点和空间数据高精度特点,设计了符合GIS数据的算法机制;然后通过快速拒绝实验和跨界测试实现了浏览器端拓扑检测算法,通过公差设置,提高了检测效率和精度,解决了Turf和Jsts库无法设置公差的问题。基于四叉树空间索引的概念,提出了一种浏览器端四叉树拓扑检查算法(BQTCA)的优化方法。在不设置容差的情况下,114点数据和1881行数据的拓扑检查耗时487毫秒,比知名公共图书馆Turf和Jsts的效率分别高出约12倍和39倍。当数据量增加到912点数据和15048行数据时,BQTCA的运行时间为6970 ms,比Turf和Jsts的效率分别提高约65倍和190倍。数据量越大,BQTCA的效率提升越明显。即使在数据量大到Turf和Jsts无法计算甚至崩溃的情况下,BQTCA仍然可以完成校验计算。通过实验,BQTCA可以显著提高大数据量下浏览器端矢量管道拓扑关系检测的效率,满足商业应用需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel optimization approach to topology checking of pipeline vector data in browser side

A novel optimization approach to topology checking of pipeline vector data in browser side

The topological relationship of spatial data is essential to GIS data processing and spatial analysis such as in analysis of pipe explosion in gas pipeline network. The existing browser-side JavaScript topology check library is inefficient and even crashes when checking the pipe network topology relationships for large amounts of data. In this paper, we present a topology checking and optimization method for pipeline vector data in browser-side using quadtree. Firstly, an algorithm mechanism that conforms to GIS data is designed based on JavaScript shared memory mechanism, topological check algorithm characteristics, and spatial data high-precision characteristics. Then using a fast rejection experiment and straddle test to realize the browser-side topology checking algorithm, through tolerance setting, improve the inspection efficiency and accuracy, which solves the problem that Turf and Jsts libraries cannot set tolerance. Based on the concept of quadtree spatial index, an optimization method of browser-side quadtree topology checking algorithm(BQTCA) is proposed. Without setting tolerance, the topology check of 114 point data and 1881 line data takes 487 milliseconds, and the efficiency of BQTCA is about 12 times and 39 times higher than that of the well-known public libraries Turf and Jsts, respectively. When the data volume increases to 912 point data and 15048 line data, BQTCA takes 6970 ms, which is about 65 times and 190 times more efficient than Turf and Jsts, respectively. The larger the data volume is, the more pronounced the efficiency improvement of BQTCA. Even when the data volume is so large that Turf and Jsts can- not calculate even crash, BQTCA can still complete the checking calculation. Through experiments, BQTCA can significantly improve the efficiency of browser-side vector pipeline topology relationship inspection under a large amount of data, and meet the commercial application requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信