用于叶黄素封装和输送的脂质纳米颗粒

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
A. D. Shirokikh, Y. A. Guruleva, E. A. Marinets, M. Y. Koroleva
{"title":"用于叶黄素封装和输送的脂质纳米颗粒","authors":"A. D. Shirokikh, Y. A. Guruleva, E. A. Marinets, M. Y. Koroleva","doi":"10.1134/s1061933x2360063x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Recently, lipid nanoparticles have been intensively studied as carriers of lipophilic drugs. In this work, we have studied the stability of nanoemulsions with paraffin oil, solid lipid nanoparticles with stearic acid, and nanostructured lipid particles with paraffin oil and stearic acid in a mass ratio of 1 : 1. The obtained results have shown that all studied lipid systems stabilized with nonionic surfactants Tween 60 and Span 60 were stable to aggregation and subsequent sedimentation for more than 30 days. The incorporation of lutein into the lipid particles has almost no effect on their stability, while the size of solid lipid nanoparticles and nanostructured lipid nanoparticles decreases from 28–30 to 15–17 nm. The bioavailability of lutein loaded in lipid nanoparticles is evaluated from their effect on the restoration of blood flow velocity by simulating hemic hypoxia. Almost immediately after the application of lipid nanoparticles, the blood flow velocity ceases to decrease, and a tendency to its restoration is observed in 5–10 min. This shows that lipid nanoparticles with paraffin oil and stearic acid are promising candidates for the delivery of lipophilic drugs.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid Nanoparticles for Lutein Encapsulation and Delivery\",\"authors\":\"A. D. Shirokikh, Y. A. Guruleva, E. A. Marinets, M. Y. Koroleva\",\"doi\":\"10.1134/s1061933x2360063x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Recently, lipid nanoparticles have been intensively studied as carriers of lipophilic drugs. In this work, we have studied the stability of nanoemulsions with paraffin oil, solid lipid nanoparticles with stearic acid, and nanostructured lipid particles with paraffin oil and stearic acid in a mass ratio of 1 : 1. The obtained results have shown that all studied lipid systems stabilized with nonionic surfactants Tween 60 and Span 60 were stable to aggregation and subsequent sedimentation for more than 30 days. The incorporation of lutein into the lipid particles has almost no effect on their stability, while the size of solid lipid nanoparticles and nanostructured lipid nanoparticles decreases from 28–30 to 15–17 nm. The bioavailability of lutein loaded in lipid nanoparticles is evaluated from their effect on the restoration of blood flow velocity by simulating hemic hypoxia. Almost immediately after the application of lipid nanoparticles, the blood flow velocity ceases to decrease, and a tendency to its restoration is observed in 5–10 min. This shows that lipid nanoparticles with paraffin oil and stearic acid are promising candidates for the delivery of lipophilic drugs.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s1061933x2360063x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s1061933x2360063x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要近年来,脂质纳米颗粒作为亲脂性药物的载体得到了广泛的研究。在这项工作中,我们研究了纳米乳液与石蜡油、固体脂质纳米颗粒与硬脂酸、纳米结构脂质颗粒与石蜡油和硬脂酸的质量比为1:1的稳定性。结果表明,用非离子表面活性剂Tween 60和Span 60稳定的脂质体系在30天以上对聚集和随后的沉降都是稳定的。叶黄素掺入脂质颗粒对其稳定性几乎没有影响,而固体脂质纳米颗粒和纳米结构脂质纳米颗粒的尺寸从28-30 nm减小到15-17 nm。脂质纳米颗粒中装载叶黄素的生物利用度通过模拟缺氧对血流速度恢复的影响来评估。应用脂质纳米颗粒后,血流速度几乎立即停止下降,并在5-10分钟内观察到血流速度恢复的趋势。这表明含有石蜡油和硬脂酸的脂质纳米颗粒是传递亲脂性药物的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lipid Nanoparticles for Lutein Encapsulation and Delivery

Lipid Nanoparticles for Lutein Encapsulation and Delivery

Abstract

Recently, lipid nanoparticles have been intensively studied as carriers of lipophilic drugs. In this work, we have studied the stability of nanoemulsions with paraffin oil, solid lipid nanoparticles with stearic acid, and nanostructured lipid particles with paraffin oil and stearic acid in a mass ratio of 1 : 1. The obtained results have shown that all studied lipid systems stabilized with nonionic surfactants Tween 60 and Span 60 were stable to aggregation and subsequent sedimentation for more than 30 days. The incorporation of lutein into the lipid particles has almost no effect on their stability, while the size of solid lipid nanoparticles and nanostructured lipid nanoparticles decreases from 28–30 to 15–17 nm. The bioavailability of lutein loaded in lipid nanoparticles is evaluated from their effect on the restoration of blood flow velocity by simulating hemic hypoxia. Almost immediately after the application of lipid nanoparticles, the blood flow velocity ceases to decrease, and a tendency to its restoration is observed in 5–10 min. This shows that lipid nanoparticles with paraffin oil and stearic acid are promising candidates for the delivery of lipophilic drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信