用于期权定价的物理信息神经网络

Ashish Dhiman, Yibei Hu
{"title":"用于期权定价的物理信息神经网络","authors":"Ashish Dhiman, Yibei Hu","doi":"arxiv-2312.06711","DOIUrl":null,"url":null,"abstract":"We apply a physics-informed deep-learning approach the PINN approach to the\nBlack-Scholes equation for pricing American and European options. We test our\napproach on both simulated as well as real market data, compare it to\nanalytical/numerical benchmarks. Our model is able to accurately capture the\nprice behaviour on simulation data, while also exhibiting reasonable\nperformance for market data. We also experiment with the architecture and\nlearning process of our PINN model to provide more understanding of convergence\nand stability issues that impact performance.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics Informed Neural Network for Option Pricing\",\"authors\":\"Ashish Dhiman, Yibei Hu\",\"doi\":\"arxiv-2312.06711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply a physics-informed deep-learning approach the PINN approach to the\\nBlack-Scholes equation for pricing American and European options. We test our\\napproach on both simulated as well as real market data, compare it to\\nanalytical/numerical benchmarks. Our model is able to accurately capture the\\nprice behaviour on simulation data, while also exhibiting reasonable\\nperformance for market data. We also experiment with the architecture and\\nlearning process of our PINN model to provide more understanding of convergence\\nand stability issues that impact performance.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.06711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.06711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将基于物理的深度学习方法,即PINN方法应用于black - scholes方程,为美国和欧洲期权定价。我们在模拟和真实市场数据上测试我们的方法,并将其与分析/数值基准进行比较。我们的模型能够准确地捕捉模拟数据上的价格行为,同时也表现出对市场数据的合理表现。我们还对我们的PINN模型的架构和学习过程进行了实验,以提供对影响性能的收敛性和稳定性问题的更多理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics Informed Neural Network for Option Pricing
We apply a physics-informed deep-learning approach the PINN approach to the Black-Scholes equation for pricing American and European options. We test our approach on both simulated as well as real market data, compare it to analytical/numerical benchmarks. Our model is able to accurately capture the price behaviour on simulation data, while also exhibiting reasonable performance for market data. We also experiment with the architecture and learning process of our PINN model to provide more understanding of convergence and stability issues that impact performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信