具有不确定性的非线性 PDE 双曲系统的新型高阶数值方法

Alina Chertock, Michael Herty, Arsen S. Iskhakov, Safa Janajra, Alexander Kurganov, Maria Lukacova-Medvidova
{"title":"具有不确定性的非线性 PDE 双曲系统的新型高阶数值方法","authors":"Alina Chertock, Michael Herty, Arsen S. Iskhakov, Safa Janajra, Alexander Kurganov, Maria Lukacova-Medvidova","doi":"arxiv-2312.08280","DOIUrl":null,"url":null,"abstract":"In this paper, we develop new high-order numerical methods for hyperbolic\nsystems of nonlinear partial differential equations (PDEs) with uncertainties.\nThe new approach is realized in the semi-discrete finite-volume framework and\nit is based on fifth-order weighted essentially non-oscillatory (WENO)\ninterpolations in (multidimensional) random space combined with second-order\npiecewise linear reconstruction in physical space. Compared with spectral\napproximations in the random space, the presented methods are essentially\nnon-oscillatory as they do not suffer from the Gibbs phenomenon while still\nachieving a high-order accuracy. The new methods are tested on a number of\nnumerical examples for both the Euler equations of gas dynamics and the\nSaint-Venant system of shallow-water equations. In the latter case, the methods\nare also proven to be well-balanced and positivity-preserving.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties\",\"authors\":\"Alina Chertock, Michael Herty, Arsen S. Iskhakov, Safa Janajra, Alexander Kurganov, Maria Lukacova-Medvidova\",\"doi\":\"arxiv-2312.08280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop new high-order numerical methods for hyperbolic\\nsystems of nonlinear partial differential equations (PDEs) with uncertainties.\\nThe new approach is realized in the semi-discrete finite-volume framework and\\nit is based on fifth-order weighted essentially non-oscillatory (WENO)\\ninterpolations in (multidimensional) random space combined with second-order\\npiecewise linear reconstruction in physical space. Compared with spectral\\napproximations in the random space, the presented methods are essentially\\nnon-oscillatory as they do not suffer from the Gibbs phenomenon while still\\nachieving a high-order accuracy. The new methods are tested on a number of\\nnumerical examples for both the Euler equations of gas dynamics and the\\nSaint-Venant system of shallow-water equations. In the latter case, the methods\\nare also proven to be well-balanced and positivity-preserving.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.08280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有不确定性的非线性偏微分方程双曲型方程组的高阶数值解法。该方法是在半离散有限体积框架中实现的,基于多维随机空间中的五阶加权非振荡插值和物理空间中的二阶分段线性重构。与随机空间中的频谱近似相比,所提出的方法基本上是非振荡的,因为它们不受吉布斯现象的影响,同时仍然实现了高阶精度。对气体动力学欧拉方程和浅水方程组的saint - venant系统的数值算例进行了验证。在后一种情况下,这些方法也被证明是平衡的和保正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties
In this paper, we develop new high-order numerical methods for hyperbolic systems of nonlinear partial differential equations (PDEs) with uncertainties. The new approach is realized in the semi-discrete finite-volume framework and it is based on fifth-order weighted essentially non-oscillatory (WENO) interpolations in (multidimensional) random space combined with second-order piecewise linear reconstruction in physical space. Compared with spectral approximations in the random space, the presented methods are essentially non-oscillatory as they do not suffer from the Gibbs phenomenon while still achieving a high-order accuracy. The new methods are tested on a number of numerical examples for both the Euler equations of gas dynamics and the Saint-Venant system of shallow-water equations. In the latter case, the methods are also proven to be well-balanced and positivity-preserving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信