巧合问题的广义匹配分布

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Ben O’Neill
{"title":"巧合问题的广义匹配分布","authors":"Ben O’Neill","doi":"10.1007/s11009-023-10067-6","DOIUrl":null,"url":null,"abstract":"<p>This paper examines the classical matching distribution arising in the “problem of coincidences”. We generalise the classical matching distribution with a preliminary round of allocation where items are correctly matched with some fixed probability, and remaining non-matched items are allocated using simple random sampling without replacement. Our generalised matching distribution is a convolution of the classical matching distribution and the binomial distribution. We examine the properties of this latter distribution and show how its probability functions can be computed. We also show how to use the distribution for matching tests and inferences of matching ability.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalised Matching Distribution for the Problem of Coincidences\",\"authors\":\"Ben O’Neill\",\"doi\":\"10.1007/s11009-023-10067-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper examines the classical matching distribution arising in the “problem of coincidences”. We generalise the classical matching distribution with a preliminary round of allocation where items are correctly matched with some fixed probability, and remaining non-matched items are allocated using simple random sampling without replacement. Our generalised matching distribution is a convolution of the classical matching distribution and the binomial distribution. We examine the properties of this latter distribution and show how its probability functions can be computed. We also show how to use the distribution for matching tests and inferences of matching ability.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10067-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-023-10067-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了“巧合问题”中出现的经典匹配分布。我们将经典匹配分布推广为初始分配,其中项目以一定的固定概率正确匹配,剩余的不匹配项目使用简单随机抽样而不替换进行分配。我们的广义匹配分布是经典匹配分布与二项分布的卷积。我们考察后一种分布的性质,并说明如何计算它的概率函数。我们还展示了如何使用分布进行匹配测试和匹配能力的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Generalised Matching Distribution for the Problem of Coincidences

A Generalised Matching Distribution for the Problem of Coincidences

This paper examines the classical matching distribution arising in the “problem of coincidences”. We generalise the classical matching distribution with a preliminary round of allocation where items are correctly matched with some fixed probability, and remaining non-matched items are allocated using simple random sampling without replacement. Our generalised matching distribution is a convolution of the classical matching distribution and the binomial distribution. We examine the properties of this latter distribution and show how its probability functions can be computed. We also show how to use the distribution for matching tests and inferences of matching ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信