隐式边界积分法的误差分析

Yimin Zhong, Kui Ren, Olof Runborg, Richard Tsai
{"title":"隐式边界积分法的误差分析","authors":"Yimin Zhong, Kui Ren, Olof Runborg, Richard Tsai","doi":"arxiv-2312.07722","DOIUrl":null,"url":null,"abstract":"The implicit boundary integral method (IBIM) provides a framework to\nconstruct quadrature rules on regular lattices for integrals over irregular\ndomain boundaries. This work provides a systematic error analysis for IBIMs on\nuniform Cartesian grids for boundaries with different degree of regularities.\nWe first show that the quadrature error gains an addition order of\n$\\frac{d-1}{2}$ from the curvature for a strongly convex smooth boundary due to\nthe ``randomness'' in the signed distances. This gain is discounted for\ndegenerated convex surfaces. We then extend the error estimate to general\nboundaries under some special circumstances, including how quadrature error\ndepends on the boundary's local geometry relative to the underlying grid.\nBounds on the variance of the quadrature error under random shifts and\nrotations of the lattices are also derived.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Analysis for the Implicit Boundary Integral Method\",\"authors\":\"Yimin Zhong, Kui Ren, Olof Runborg, Richard Tsai\",\"doi\":\"arxiv-2312.07722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implicit boundary integral method (IBIM) provides a framework to\\nconstruct quadrature rules on regular lattices for integrals over irregular\\ndomain boundaries. This work provides a systematic error analysis for IBIMs on\\nuniform Cartesian grids for boundaries with different degree of regularities.\\nWe first show that the quadrature error gains an addition order of\\n$\\\\frac{d-1}{2}$ from the curvature for a strongly convex smooth boundary due to\\nthe ``randomness'' in the signed distances. This gain is discounted for\\ndegenerated convex surfaces. We then extend the error estimate to general\\nboundaries under some special circumstances, including how quadrature error\\ndepends on the boundary's local geometry relative to the underlying grid.\\nBounds on the variance of the quadrature error under random shifts and\\nrotations of the lattices are also derived.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐式边界积分法(IBIM)为不规则域边界上的积分在规则格上构造正交规则提供了一个框架。本文对不同规则程度边界的ibm非均匀笛卡尔网格进行了系统误差分析。我们首先证明,由于符号距离的“随机性”,正交误差从强凸光滑边界的曲率中获得$\frac{d-1}{2}$的附加阶。这个增益对于退化的凸曲面是折现的。然后,我们将误差估计扩展到一些特殊情况下的一般边界,包括正交误差如何依赖于边界相对于底层网格的局部几何形状。本文还推导了在晶格的随机移位和平移情况下正交误差方差的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Analysis for the Implicit Boundary Integral Method
The implicit boundary integral method (IBIM) provides a framework to construct quadrature rules on regular lattices for integrals over irregular domain boundaries. This work provides a systematic error analysis for IBIMs on uniform Cartesian grids for boundaries with different degree of regularities. We first show that the quadrature error gains an addition order of $\frac{d-1}{2}$ from the curvature for a strongly convex smooth boundary due to the ``randomness'' in the signed distances. This gain is discounted for degenerated convex surfaces. We then extend the error estimate to general boundaries under some special circumstances, including how quadrature error depends on the boundary's local geometry relative to the underlying grid. Bounds on the variance of the quadrature error under random shifts and rotations of the lattices are also derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信