整流深度神经网络在近似麦金--弗拉索夫随机微分方程的解时克服了维度诅咒

Ariel Neufeld, Tuan Anh Nguyen
{"title":"整流深度神经网络在近似麦金--弗拉索夫随机微分方程的解时克服了维度诅咒","authors":"Ariel Neufeld, Tuan Anh Nguyen","doi":"arxiv-2312.07042","DOIUrl":null,"url":null,"abstract":"In this paper we prove that rectified deep neural networks do not suffer from\nthe curse of dimensionality when approximating McKean--Vlasov SDEs in the sense\nthat the number of parameters in the deep neural networks only grows\npolynomially in the space dimension $d$ of the SDE and the reciprocal of the\naccuracy $\\epsilon$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations\",\"authors\":\"Ariel Neufeld, Tuan Anh Nguyen\",\"doi\":\"arxiv-2312.07042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that rectified deep neural networks do not suffer from\\nthe curse of dimensionality when approximating McKean--Vlasov SDEs in the sense\\nthat the number of parameters in the deep neural networks only grows\\npolynomially in the space dimension $d$ of the SDE and the reciprocal of the\\naccuracy $\\\\epsilon$.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了整流深度神经网络在逼近McKean—Vlasov SDE时不受维数诅咒的影响,即深度神经网络中的参数数量仅在SDE的空间维数d和精度的倒数中呈多项式增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations
In this paper we prove that rectified deep neural networks do not suffer from the curse of dimensionality when approximating McKean--Vlasov SDEs in the sense that the number of parameters in the deep neural networks only grows polynomially in the space dimension $d$ of the SDE and the reciprocal of the accuracy $\epsilon$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信