{"title":"整流深度神经网络在近似麦金--弗拉索夫随机微分方程的解时克服了维度诅咒","authors":"Ariel Neufeld, Tuan Anh Nguyen","doi":"arxiv-2312.07042","DOIUrl":null,"url":null,"abstract":"In this paper we prove that rectified deep neural networks do not suffer from\nthe curse of dimensionality when approximating McKean--Vlasov SDEs in the sense\nthat the number of parameters in the deep neural networks only grows\npolynomially in the space dimension $d$ of the SDE and the reciprocal of the\naccuracy $\\epsilon$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations\",\"authors\":\"Ariel Neufeld, Tuan Anh Nguyen\",\"doi\":\"arxiv-2312.07042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that rectified deep neural networks do not suffer from\\nthe curse of dimensionality when approximating McKean--Vlasov SDEs in the sense\\nthat the number of parameters in the deep neural networks only grows\\npolynomially in the space dimension $d$ of the SDE and the reciprocal of the\\naccuracy $\\\\epsilon$.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rectified deep neural networks overcome the curse of dimensionality when approximating solutions of McKean--Vlasov stochastic differential equations
In this paper we prove that rectified deep neural networks do not suffer from
the curse of dimensionality when approximating McKean--Vlasov SDEs in the sense
that the number of parameters in the deep neural networks only grows
polynomially in the space dimension $d$ of the SDE and the reciprocal of the
accuracy $\epsilon$.