从多个巴克利-詹姆斯估计值中进行适当选择

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2023-12-14 DOI:10.1007/s00184-023-00933-1
Qiqing Yu
{"title":"从多个巴克利-詹姆斯估计值中进行适当选择","authors":"Qiqing Yu","doi":"10.1007/s00184-023-00933-1","DOIUrl":null,"url":null,"abstract":"<p>Consider the semiparametric linear regression estimation problem with right-censored data. Under right censoring, the Buckley–James estimator (BJE) is the standard extension of the least squares estimator. Moreover, an iterative algorithm for the BJE has been implemented in R package called rms. We show that it often does not yield a solution, even if a consistent BJE exists. Yu and Wong (J Stat Comput Simul 72:451–460, 2002) proposed another algorithm to find all possible BJEs. The latter algorithm is modified in this paper so that it indeed finds all BJEs when the underlying regression parameter vector is identifiable. We show that some of these BJE’s can be inconsistent. Thus it is important to decide how to select a proper BJE such that it is consistent if the parameter is identifiable. We suggest either choose one close to the modified semi-parametric maximum likelihood estimator (Yu and Wong in Technometrics 47:34–42, 2005) or a finite boundary point if there are infinitely many BJEs.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"68 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A proper selection among multiple Buckley–James estimates\",\"authors\":\"Qiqing Yu\",\"doi\":\"10.1007/s00184-023-00933-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the semiparametric linear regression estimation problem with right-censored data. Under right censoring, the Buckley–James estimator (BJE) is the standard extension of the least squares estimator. Moreover, an iterative algorithm for the BJE has been implemented in R package called rms. We show that it often does not yield a solution, even if a consistent BJE exists. Yu and Wong (J Stat Comput Simul 72:451–460, 2002) proposed another algorithm to find all possible BJEs. The latter algorithm is modified in this paper so that it indeed finds all BJEs when the underlying regression parameter vector is identifiable. We show that some of these BJE’s can be inconsistent. Thus it is important to decide how to select a proper BJE such that it is consistent if the parameter is identifiable. We suggest either choose one close to the modified semi-parametric maximum likelihood estimator (Yu and Wong in Technometrics 47:34–42, 2005) or a finite boundary point if there are infinitely many BJEs.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00933-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00933-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑右截尾数据的半参数线性回归估计问题。在正确的滤波条件下,Buckley-James估计量是最小二乘估计量的标准推广。此外,在R包中实现了BJE的迭代算法rms。我们表明,即使存在一致的BJE,它通常也不会产生解决方案。Yu和Wong (J Stat computer Simul 72:451-460, 2002)提出了另一种算法来寻找所有可能的bje。本文对后一种算法进行了改进,使得当底层回归参数向量可识别时,它确实能找到所有的bje。我们表明,其中一些BJE可能是不一致的。因此,重要的是决定如何选择合适的BJE,以便在参数可识别的情况下保持一致。我们建议,如果存在无限多个bje,则选择一个接近修改的半参数极大似然估计量(Yu and Wong in technomeics 47:34 - 42,2005)或有限边界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A proper selection among multiple Buckley–James estimates

A proper selection among multiple Buckley–James estimates

Consider the semiparametric linear regression estimation problem with right-censored data. Under right censoring, the Buckley–James estimator (BJE) is the standard extension of the least squares estimator. Moreover, an iterative algorithm for the BJE has been implemented in R package called rms. We show that it often does not yield a solution, even if a consistent BJE exists. Yu and Wong (J Stat Comput Simul 72:451–460, 2002) proposed another algorithm to find all possible BJEs. The latter algorithm is modified in this paper so that it indeed finds all BJEs when the underlying regression parameter vector is identifiable. We show that some of these BJE’s can be inconsistent. Thus it is important to decide how to select a proper BJE such that it is consistent if the parameter is identifiable. We suggest either choose one close to the modified semi-parametric maximum likelihood estimator (Yu and Wong in Technometrics 47:34–42, 2005) or a finite boundary point if there are infinitely many BJEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信