序列模数 pr 的 p 线性方案

IF 0.5 4区 数学 Q3 MATHEMATICS
Frits Beukers
{"title":"序列模数 pr 的 p 线性方案","authors":"Frits Beukers","doi":"10.1016/j.indag.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes <span><math><mi>p</mi></math></span>. Modulo prime powers <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called <span><math><mi>p</mi></math></span>-linear schemes. They are generalizations of finite <span><math><mi>p</mi></math></span>-automata. In this paper we construct such <span><math><mi>p</mi></math></span>-linear schemes and give upper bounds for the number of states which, for fixed <span><math><mi>r</mi></math></span>, do not depend on <span><math><mi>p</mi></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 4","pages":"Pages 698-707"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723001064/pdfft?md5=ea710133f3e4e343c282392434c744c9&pid=1-s2.0-S0019357723001064-main.pdf","citationCount":"0","resultStr":"{\"title\":\"p-linear schemes for sequences modulo pr\",\"authors\":\"Frits Beukers\",\"doi\":\"10.1016/j.indag.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes <span><math><mi>p</mi></math></span>. Modulo prime powers <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called <span><math><mi>p</mi></math></span>-linear schemes. They are generalizations of finite <span><math><mi>p</mi></math></span>-automata. In this paper we construct such <span><math><mi>p</mi></math></span>-linear schemes and give upper bounds for the number of states which, for fixed <span><math><mi>r</mi></math></span>, do not depend on <span><math><mi>p</mi></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 4\",\"pages\":\"Pages 698-707\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001064/pdfft?md5=ea710133f3e4e343c282392434c744c9&pid=1-s2.0-S0019357723001064-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

许多有趣的组合序列,如apry数和Franel数,享有所谓的卢卡斯性质,对几乎所有素数p取模。模素数幂pr这样的序列具有更复杂的行为,可以用卢卡斯性质的矩阵版本描述,称为p-线性格式。它们是有限p自动机的推广。本文构造了这样的p-线性格式,并给出了对于固定r不依赖于p的状态数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-linear schemes for sequences modulo pr

Many interesting combinatorial sequences, such as Apéry numbers and Franel numbers, enjoy the so-called Lucas property modulo almost all primes p. Modulo prime powers pr such sequences have a more complicated behaviour which can be described by matrix versions of the Lucas property called p-linear schemes. They are generalizations of finite p-automata. In this paper we construct such p-linear schemes and give upper bounds for the number of states which, for fixed r, do not depend on p.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信