{"title":"用于轨道车辆盘式制动器热应力和疲劳分析的移动热源非轴对称建模","authors":"Kejela Temesgen Deressa, Demiss Alemu Ambie","doi":"10.1007/s40864-023-00207-z","DOIUrl":null,"url":null,"abstract":"<p>Railroad vehicles require the use of disc brakes for safety purposes, however, the brakes are susceptible to thermal stress, which ultimately shortens their lifespan. Hence, to accurately predict the life of railway disc brakes in thermal load simulations, the availability of a model that considers spatial and temporal variations of temperature and thermal stress is essential. A non-axisymmetric moving heat source model was successfully developed to address spatial temperature variations (Deressa and Ambie in Urban Rail Transit 8(3–4):198–216, 2022. 10.1007/s40864-022-00176-9), and this study aims to extend this model to predict thermal stress and fatigue life, and assess its effectiveness. The analysis includes braking time thermal analysis, cooling time thermal analysis, and structural analysis. Spatially varying temperature is incorporated into the structural analysis to calculate thermal stress and strain. A fracture mechanics-based fatigue life estimation method is applied to critical areas of the friction surface. The model is implemented on two braking conditions (service and emergency) and two disc geometries (actual and modified). The model successfully resolves spatial heat considerations by estimating maximum stress variations of up to 46 MPa along the disc circumference. Stress differences of 3 MPa and 6 MPa are observed between the leading and trailing edges of the pad trace during late and mid-braking times, respectively. Fatigue life results identify critical positions and directions for fatigue life initiation. Additionally, these results are in accord with previous observations available in the literature. The proposed model can be easily implemented in various sliding friction applications such as drum brakes, engine pistons/cylinders, and camshafts.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":"82 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-axisymmetric Modeling of a Moving Heat Source for Thermal Stress and Fatigue Analysis of Railway Vehicle Disc Brakes\",\"authors\":\"Kejela Temesgen Deressa, Demiss Alemu Ambie\",\"doi\":\"10.1007/s40864-023-00207-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Railroad vehicles require the use of disc brakes for safety purposes, however, the brakes are susceptible to thermal stress, which ultimately shortens their lifespan. Hence, to accurately predict the life of railway disc brakes in thermal load simulations, the availability of a model that considers spatial and temporal variations of temperature and thermal stress is essential. A non-axisymmetric moving heat source model was successfully developed to address spatial temperature variations (Deressa and Ambie in Urban Rail Transit 8(3–4):198–216, 2022. 10.1007/s40864-022-00176-9), and this study aims to extend this model to predict thermal stress and fatigue life, and assess its effectiveness. The analysis includes braking time thermal analysis, cooling time thermal analysis, and structural analysis. Spatially varying temperature is incorporated into the structural analysis to calculate thermal stress and strain. A fracture mechanics-based fatigue life estimation method is applied to critical areas of the friction surface. The model is implemented on two braking conditions (service and emergency) and two disc geometries (actual and modified). The model successfully resolves spatial heat considerations by estimating maximum stress variations of up to 46 MPa along the disc circumference. Stress differences of 3 MPa and 6 MPa are observed between the leading and trailing edges of the pad trace during late and mid-braking times, respectively. Fatigue life results identify critical positions and directions for fatigue life initiation. Additionally, these results are in accord with previous observations available in the literature. The proposed model can be easily implemented in various sliding friction applications such as drum brakes, engine pistons/cylinders, and camshafts.</p>\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-023-00207-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-023-00207-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
摘要
为了安全起见,铁路车辆需要使用盘式制动器,然而,制动器容易受到热应力的影响,这最终缩短了它们的使用寿命。因此,要在热负荷模拟中准确预测铁路盘式制动器的寿命,必须建立一个考虑温度和热应力时空变化的模型。基于非轴对称移动热源模型的城市轨道交通空间温度变化研究[j] . Deressa and Ambie in Urban Rail Transit 8(3-4): 198-216, 2022。10.1007/s40864-022-00176-9),本研究旨在将该模型扩展到热应力和疲劳寿命预测,并评估其有效性。分析包括制动时间热分析、冷却时间热分析和结构分析。将空间温度变化纳入结构分析,计算热应力和热应变。将基于断裂力学的疲劳寿命估计方法应用于摩擦面关键区域。该模型在两种制动工况(使用工况和紧急工况)和两种制动盘几何形状(实际工况和修正工况)下实现。该模型通过估计沿圆盘圆周最大应力变化可达46 MPa,成功地解决了空间热因素。在制动后期和制动中期,垫片轨迹前后边缘的应力差分别为3 MPa和6 MPa。疲劳寿命结果确定了疲劳寿命起始的关键位置和方向。此外,这些结果与文献中已有的观察结果一致。所提出的模型可以很容易地在各种滑动摩擦应用中实现,例如鼓式制动器,发动机活塞/气缸和凸轮轴。
Non-axisymmetric Modeling of a Moving Heat Source for Thermal Stress and Fatigue Analysis of Railway Vehicle Disc Brakes
Railroad vehicles require the use of disc brakes for safety purposes, however, the brakes are susceptible to thermal stress, which ultimately shortens their lifespan. Hence, to accurately predict the life of railway disc brakes in thermal load simulations, the availability of a model that considers spatial and temporal variations of temperature and thermal stress is essential. A non-axisymmetric moving heat source model was successfully developed to address spatial temperature variations (Deressa and Ambie in Urban Rail Transit 8(3–4):198–216, 2022. 10.1007/s40864-022-00176-9), and this study aims to extend this model to predict thermal stress and fatigue life, and assess its effectiveness. The analysis includes braking time thermal analysis, cooling time thermal analysis, and structural analysis. Spatially varying temperature is incorporated into the structural analysis to calculate thermal stress and strain. A fracture mechanics-based fatigue life estimation method is applied to critical areas of the friction surface. The model is implemented on two braking conditions (service and emergency) and two disc geometries (actual and modified). The model successfully resolves spatial heat considerations by estimating maximum stress variations of up to 46 MPa along the disc circumference. Stress differences of 3 MPa and 6 MPa are observed between the leading and trailing edges of the pad trace during late and mid-braking times, respectively. Fatigue life results identify critical positions and directions for fatigue life initiation. Additionally, these results are in accord with previous observations available in the literature. The proposed model can be easily implemented in various sliding friction applications such as drum brakes, engine pistons/cylinders, and camshafts.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.