答案集编程中的人类条件推理

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
CHIAKI SAKAMA
{"title":"答案集编程中的人类条件推理","authors":"CHIAKI SAKAMA","doi":"10.1017/s1471068423000376","DOIUrl":null,"url":null,"abstract":"<p>Given a conditional sentence “<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\varphi}\\Rightarrow \\psi$</span></span></img></span></span>\" (if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\varphi}$</span></span></img></span></span> then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\psi$</span></span></img></span></span>) and respective facts, four different types of inferences are observed in human reasoning: <span>Affirming the antecedent</span> (AA) (or <span>modus ponens</span>) reasons <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\psi$</span></span></img></span></span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\varphi}$</span></span></img></span></span>; <span>affirming the consequent</span> (AC) reasons <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\varphi}$</span></span></img></span></span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\psi$</span></span></img></span></span>; <span>denying the antecedent</span> (DA) reasons <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg\\psi$</span></span></img></span></span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg{\\varphi}$</span></span></img></span></span>; and <span>denying the consequent</span> (DC) (or <span>modus tollens</span>) reasons <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg{\\varphi}$</span></span></img></span></span> from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\neg\\psi$</span></span></img></span></span>. Among them, AA and DC are logically valid, while AC and DA are logically invalid and often called <span>logical fallacies</span>. Nevertheless, humans often perform AC or DA as <span>pragmatic inference</span> in daily life. In this paper, we realize AC, DA and DC inferences in <span>answer set programming</span>. Eight different types of <span>completion</span> are introduced, and their semantics are given by answer sets. We investigate formal properties and characterize human reasoning tasks in cognitive psychology. Those completions are also applied to commonsense reasoning in AI.</p>","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Conditional Reasoning in Answer Set Programming\",\"authors\":\"CHIAKI SAKAMA\",\"doi\":\"10.1017/s1471068423000376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a conditional sentence “<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\varphi}\\\\Rightarrow \\\\psi$</span></span></img></span></span>\\\" (if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\varphi}$</span></span></img></span></span> then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\psi$</span></span></img></span></span>) and respective facts, four different types of inferences are observed in human reasoning: <span>Affirming the antecedent</span> (AA) (or <span>modus ponens</span>) reasons <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\psi$</span></span></img></span></span> from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\varphi}$</span></span></img></span></span>; <span>affirming the consequent</span> (AC) reasons <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\varphi}$</span></span></img></span></span> from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\psi$</span></span></img></span></span>; <span>denying the antecedent</span> (DA) reasons <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg\\\\psi$</span></span></img></span></span> from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg{\\\\varphi}$</span></span></img></span></span>; and <span>denying the consequent</span> (DC) (or <span>modus tollens</span>) reasons <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg{\\\\varphi}$</span></span></img></span></span> from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231213121345464-0823:S1471068423000376:S1471068423000376_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\neg\\\\psi$</span></span></img></span></span>. Among them, AA and DC are logically valid, while AC and DA are logically invalid and often called <span>logical fallacies</span>. Nevertheless, humans often perform AC or DA as <span>pragmatic inference</span> in daily life. In this paper, we realize AC, DA and DC inferences in <span>answer set programming</span>. Eight different types of <span>completion</span> are introduced, and their semantics are given by answer sets. We investigate formal properties and characterize human reasoning tasks in cognitive psychology. Those completions are also applied to commonsense reasoning in AI.</p>\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1471068423000376\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1471068423000376","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

给定一个条件句“${\varphi}\Rightarrow \psi$”(如果${\varphi}$那么$\psi$)和各自的事实,在人类推理中可以观察到四种不同类型的推理:确认先行(AA)(或假设方式)推理$\psi$从${\varphi}$;确认结果(AC)原因${\varphi}$来自$\psi$;否认前因$\neg\psi$来自$\neg{\varphi}$;并否认结果(DC)(或计算方式)的原因$\neg{\varphi}$从$\neg\psi$。其中,AA和DC是逻辑有效的,AC和DA是逻辑无效的,常被称为逻辑谬误。然而,人类在日常生活中经常将AC或DA作为语用推理。在本文中,我们实现了答案集规划中的AC、DA和DC推理。介绍了八种不同类型的补全,并通过答案集给出了它们的语义。我们研究了认知心理学中人类推理任务的形式属性和特征。这些补全也适用于AI中的常识性推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Conditional Reasoning in Answer Set Programming

Given a conditional sentence “${\varphi}\Rightarrow \psi$" (if ${\varphi}$ then $\psi$) and respective facts, four different types of inferences are observed in human reasoning: Affirming the antecedent (AA) (or modus ponens) reasons $\psi$ from ${\varphi}$; affirming the consequent (AC) reasons ${\varphi}$ from $\psi$; denying the antecedent (DA) reasons $\neg\psi$ from $\neg{\varphi}$; and denying the consequent (DC) (or modus tollens) reasons $\neg{\varphi}$ from $\neg\psi$. Among them, AA and DC are logically valid, while AC and DA are logically invalid and often called logical fallacies. Nevertheless, humans often perform AC or DA as pragmatic inference in daily life. In this paper, we realize AC, DA and DC inferences in answer set programming. Eight different types of completion are introduced, and their semantics are given by answer sets. We investigate formal properties and characterize human reasoning tasks in cognitive psychology. Those completions are also applied to commonsense reasoning in AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Practice of Logic Programming
Theory and Practice of Logic Programming 工程技术-计算机:理论方法
CiteScore
4.50
自引率
21.40%
发文量
40
审稿时长
>12 weeks
期刊介绍: Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信