由部分传播构建的最小线性编码

Xia Wu, Wei Lu, Xiwang Cao, Gaojun Luo
{"title":"由部分传播构建的最小线性编码","authors":"Xia Wu, Wei Lu, Xiwang Cao, Gaojun Luo","doi":"10.1007/s12095-023-00689-5","DOIUrl":null,"url":null,"abstract":"<p>Partial spreads are important in finite geometry and can be used to construct linear codes. From the results in (Des. Codes Cryptogr. <b>90</b>, 1–15, 2022) by Xia Li, Qin Yue and Deng Tang, we know that if the number of the elements in a partial spread is “big enough”, then the corresponding linear code is minimal. This paper used the sufficient condition in (IEEE Trans. Inf. Theory <b>44</b>(5), 2010–2017, 1998) to prove the minimality of such linear codes. In the present paper, we use the geometric approach to study the minimality of linear codes constructed from partial spreads in all cases.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal linear codes constructed from partial spreads\",\"authors\":\"Xia Wu, Wei Lu, Xiwang Cao, Gaojun Luo\",\"doi\":\"10.1007/s12095-023-00689-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partial spreads are important in finite geometry and can be used to construct linear codes. From the results in (Des. Codes Cryptogr. <b>90</b>, 1–15, 2022) by Xia Li, Qin Yue and Deng Tang, we know that if the number of the elements in a partial spread is “big enough”, then the corresponding linear code is minimal. This paper used the sufficient condition in (IEEE Trans. Inf. Theory <b>44</b>(5), 2010–2017, 1998) to prove the minimality of such linear codes. In the present paper, we use the geometric approach to study the minimality of linear codes constructed from partial spreads in all cases.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-023-00689-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00689-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部展开在有限几何中很重要,可以用来构造线性码。由夏丽、秦悦、邓唐在(Des. Codes Cryptogr. 90,1 - 15,2022)中的结果可知,如果部分展开中的元素个数“足够大”,则对应的线性码是最小的。本文将该充分条件应用于IEEE Trans。参考理论44(5),2010 - 2017,1998)来证明这种线性码的极小性。在本文中,我们用几何方法研究了所有情况下由部分扩展构造的线性码的极小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal linear codes constructed from partial spreads

Partial spreads are important in finite geometry and can be used to construct linear codes. From the results in (Des. Codes Cryptogr. 90, 1–15, 2022) by Xia Li, Qin Yue and Deng Tang, we know that if the number of the elements in a partial spread is “big enough”, then the corresponding linear code is minimal. This paper used the sufficient condition in (IEEE Trans. Inf. Theory 44(5), 2010–2017, 1998) to prove the minimality of such linear codes. In the present paper, we use the geometric approach to study the minimality of linear codes constructed from partial spreads in all cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信