Tim P. Dooley, Martin P. A. Jackson, Michael R. Hudec
{"title":"盐蚀斜坡上盐冠的生长和演变:物理模型的启示","authors":"Tim P. Dooley, Martin P. A. Jackson, Michael R. Hudec","doi":"10.1306/08072222013","DOIUrl":null,"url":null,"abstract":"Salt canopies form the most spectacular and complex structures in the realm of salt tectonics. In this study, we use two physical models to examine salt-canopy growth and evolution on a salt-detached slope. A series of 14 feeders were seeded in our models and grew upward as passive diapirs. Eventually, these passive diapirs spread as salt sheets, with motion vectors skewed down the imposed regional dip slope. Sutures between individual sheets were bowed in the direction of override and became dismembered as the canopy system matured. Feeders in the interior of the array faced increasing competition for salt due to drawdown and primary welding. In contrast, feeders on the canopy peripheries faced less competition and rose more vigorously, generating local elevation-head gradients and imparting salt-flow directions that were highly oblique to the regional dip slope. Finally, our model canopies were loaded by prograding sediments. Canopy formation is strongly controlled by the salt budget, among other factors, and our less mature model formed a series of small canopies and isolated salt sheets. During sedimentary loading, this model displayed intrasheet and intracanopy inflation–deflation flow cells as salt was driven downdip. Sutures were further dispersed, and some were everted. Loading of our mature model deflated the originally continuous canopy, driving salt seaward up a series of base-salt ramps to form a shallow distal canopy. Suture fragments were carried all the way to the toe of this shallow canopy.Our more mature model was also shortened before loading, which resulted in canopy remobilization, thickening, and enhanced suture deformation. Salt flow during shortening was channeled by feeders, forming salt streams with orientations commonly oblique to regional dip. Canopy salt responded to shortening primarily by thickening, whereas the sediments below the canopy displayed a contrasting story. Here, a complex network of thrusts and tear faults linked the variably welded feeders.","PeriodicalId":7124,"journal":{"name":"AAPG Bulletin","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and evolution of salt canopies on a salt-detached slope: Insights from physical models\",\"authors\":\"Tim P. Dooley, Martin P. A. Jackson, Michael R. Hudec\",\"doi\":\"10.1306/08072222013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salt canopies form the most spectacular and complex structures in the realm of salt tectonics. In this study, we use two physical models to examine salt-canopy growth and evolution on a salt-detached slope. A series of 14 feeders were seeded in our models and grew upward as passive diapirs. Eventually, these passive diapirs spread as salt sheets, with motion vectors skewed down the imposed regional dip slope. Sutures between individual sheets were bowed in the direction of override and became dismembered as the canopy system matured. Feeders in the interior of the array faced increasing competition for salt due to drawdown and primary welding. In contrast, feeders on the canopy peripheries faced less competition and rose more vigorously, generating local elevation-head gradients and imparting salt-flow directions that were highly oblique to the regional dip slope. Finally, our model canopies were loaded by prograding sediments. Canopy formation is strongly controlled by the salt budget, among other factors, and our less mature model formed a series of small canopies and isolated salt sheets. During sedimentary loading, this model displayed intrasheet and intracanopy inflation–deflation flow cells as salt was driven downdip. Sutures were further dispersed, and some were everted. Loading of our mature model deflated the originally continuous canopy, driving salt seaward up a series of base-salt ramps to form a shallow distal canopy. Suture fragments were carried all the way to the toe of this shallow canopy.Our more mature model was also shortened before loading, which resulted in canopy remobilization, thickening, and enhanced suture deformation. Salt flow during shortening was channeled by feeders, forming salt streams with orientations commonly oblique to regional dip. Canopy salt responded to shortening primarily by thickening, whereas the sediments below the canopy displayed a contrasting story. Here, a complex network of thrusts and tear faults linked the variably welded feeders.\",\"PeriodicalId\":7124,\"journal\":{\"name\":\"AAPG Bulletin\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPG Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1306/08072222013\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPG Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/08072222013","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth and evolution of salt canopies on a salt-detached slope: Insights from physical models
Salt canopies form the most spectacular and complex structures in the realm of salt tectonics. In this study, we use two physical models to examine salt-canopy growth and evolution on a salt-detached slope. A series of 14 feeders were seeded in our models and grew upward as passive diapirs. Eventually, these passive diapirs spread as salt sheets, with motion vectors skewed down the imposed regional dip slope. Sutures between individual sheets were bowed in the direction of override and became dismembered as the canopy system matured. Feeders in the interior of the array faced increasing competition for salt due to drawdown and primary welding. In contrast, feeders on the canopy peripheries faced less competition and rose more vigorously, generating local elevation-head gradients and imparting salt-flow directions that were highly oblique to the regional dip slope. Finally, our model canopies were loaded by prograding sediments. Canopy formation is strongly controlled by the salt budget, among other factors, and our less mature model formed a series of small canopies and isolated salt sheets. During sedimentary loading, this model displayed intrasheet and intracanopy inflation–deflation flow cells as salt was driven downdip. Sutures were further dispersed, and some were everted. Loading of our mature model deflated the originally continuous canopy, driving salt seaward up a series of base-salt ramps to form a shallow distal canopy. Suture fragments were carried all the way to the toe of this shallow canopy.Our more mature model was also shortened before loading, which resulted in canopy remobilization, thickening, and enhanced suture deformation. Salt flow during shortening was channeled by feeders, forming salt streams with orientations commonly oblique to regional dip. Canopy salt responded to shortening primarily by thickening, whereas the sediments below the canopy displayed a contrasting story. Here, a complex network of thrusts and tear faults linked the variably welded feeders.
期刊介绍:
While the 21st-century AAPG Bulletin has undergone some changes since 1917, enlarging to 8 ½ x 11” size to incorporate more material and being published digitally as well as in print, it continues to adhere to the primary purpose of the organization, which is to advance the science of geology especially as it relates to petroleum, natural gas, other subsurface fluids, and mineral resources.
Delivered digitally or in print monthly to each AAPG Member as a part of membership dues, the AAPG Bulletin is one of the most respected, peer-reviewed technical journals in existence, with recent issues containing papers focused on such topics as the Middle East, channel detection, China, permeability, subseismic fault prediction, the U.S., and Africa.